हिंदी

Prove That: Cos15° Cos35° Cosec55° Cos60° Cosec75° = 1 2 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that:

cos15° cos35° cosec55° cos60° cosec75° = \[\frac{1}{2}\]

योग

उत्तर

\[\begin{array}{l} {\text{LHS}=cos15}^\circ\cos {35}^\circ \cos {ec55}^\circ\cos {60}^\circ \cos {ec75}^\circ \\ \end{array}\]

\[\begin{array}{l}=cos( {90}^0 - {75}^0 )\cos( {90}^0 - {55}^0 )\frac{1}{\sin {55}^0}\times\frac{1}{2}\times\frac{1}{\sin {75}^0} \\ \end{array}\]

\[\begin{array}{l}{=sin75}^0 \sin {55}^0 \frac{1}{\sin {55}^0} \times \frac{1}{2} \times \frac{1}{\sin {75}^0} \\ \end{array}\]\[=\frac{1}{2} = \text{RHS}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Trigonometric Ratios of Complementary Angles - Exercises [पृष्ठ ३१३]

APPEARS IN

आरएस अग्रवाल Mathematics [English] Class 10
अध्याय 7 Trigonometric Ratios of Complementary Angles
Exercises | Q 6.3 | पृष्ठ ३१३

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

`(\text{i})\text{ }\frac{\cot 54^\text{o}}{\tan36^\text{o}}+\frac{\tan 20^\text{o}}{\cot 70^\text{o}}-2`


If tan 2A = cot (A – 18°), where 2A is an acute angle, find the value of A


Express sin 67° + cos 75° in terms of trigonometric ratios of angles between 0° and 45°


If sec 4A = cosec (A− 20°), where 4A is an acute angle, find the value of A.


Solve.
`cos55/sin35+cot35/tan55`


For triangle ABC, show that : `tan  (B + C)/2 = cot  A/2`


Evaluate:

`sin80^circ/(cos10^circ) + sin59^circ  sec31^circ`


A triangle ABC is right angles at B; find the value of`(secA.cosecC - tanA.cotC)/sinB`


Prove that:

`(sinthetasin(90^circ - theta))/cot(90^circ - theta) = 1 - sin^2theta`


Use tables to find sine of 47° 32'


Evaluate:

cos 40° cosec 50° + sin 50° sec 40°


Find A, if 0° ≤ A ≤ 90° and 2 cos2 A – 1 = 0


If the angle θ = –45° , find the value of tan θ.


Given 

\[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\] what is the value of \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\]


Write the acute angle θ satisfying \[\cos B = \frac{3}{5}\]


If θ is an acute angle such that \[\tan^2 \theta = \frac{8}{7}\] then the value of \[\frac{\left( 1 + \sin \theta \right) \left( 1 - \sin \theta \right)}{\left( 1 + \cos \theta \right) \left( 1 - \cos \theta \right)}\]


tan 5° ✕ tan 30° ✕ 4 tan 85° is equal to 


Find the value of the following:

sin 21° 21′


If sin A = `3/5` then show that 4 tan A + 3 sin A = 6 cos A


Prove the following:

tan θ + tan (90° – θ) = sec θ sec (90° – θ)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×