Advertisements
Advertisements
प्रश्न
If sec 4A = cosec (A− 20°), where 4A is an acute angle, find the value of A.
उत्तर
Given that,
sec 4A = cosec (A − 20°)
cosec (90° − 4A) = cosec (A − 20°)
90° − 4A= A− 20°
110° = 5A
A = 22°
APPEARS IN
संबंधित प्रश्न
Solve.
`sec75/(cosec15)`
Evaluate.
`(2tan53^@)/(cot37^@)-cot80^@/tan10^@`
Evaluate.
cos225° + cos265° - tan245°
Find the value of x, if sin x = sin 60° cos 30° – cos 60° sin 30°
Find the value of x, if sin 3x = 2 sin 30° cos 30°
Use tables to find sine of 47° 32'
Use tables to find sine of 10° 20' + 20° 45'
Use tables to find cosine of 8° 12’
Evaluate:
`2(tan35^@/cot55^@)^2 + (cot55^@/tan35^@)^2 - 3(sec40^@/(cosec50^@))`
Evaluate:
3 cos 80° cosec 10° + 2 cos 59° cosec 31°
Prove that:
`1/(1 + cos(90^@ - A)) + 1/(1 - cos(90^@ - A)) = 2cosec^2(90^@ - A)`
Find A, if 0° ≤ A ≤ 90° and 2 cos2 A – 1 = 0
Find A, if 0° ≤ A ≤ 90° and cos2 A – cos A = 0
Find the sine ratio of θ in standard position whose terminal arm passes through (3, 4)
What is the maximum value of \[\frac{1}{\sec \theta}\]
Evaluate: `(cot^2 41°)/(tan^2 49°) - 2 (sin^2 75°)/(cos^2 15°)`
The value of tan 1° tan 2° tan 3°…. tan 89° is
2(sin6 θ + cos6 θ) – 3(sin4 θ + cos4 θ) is equal to ______.
The value of the expression (cos2 23° – sin2 67°) is positive.