Advertisements
Advertisements
प्रश्न
Evaluate:
`2(tan35^@/cot55^@)^2 + (cot55^@/tan35^@)^2 - 3(sec40^@/(cosec50^@))`
उत्तर
`2(tan35^@/cot55^@)^2 + (cot55^@/tan35^@)^2 - 3(sec40^@/(cosec50^@))`
= `2(tan(90^@-55^@)/cot55^@)^2 + (cot(90^@-35^@)/tan35^@)^2 - 3(sec(90^@-50^@)/(cosec50^@))`
= `2(cot55^@/cot55^@)^2 + (tan35^@/tan35^@)^2 - 3((cosec50^@)/(cosec50^@))` ...`[∵ tan (90^@ - theta) = cot theta` `cot(90^@ - theta) = tan theta` ` sec(90^@ - theta) = cosec theta`]
= 2 × (1)2 + (1)2 – 3 × 1
= 2 × 1 + 1 – 3
= 2 + 1 – 3
= 0
APPEARS IN
संबंधित प्रश्न
If tan 2θ = cot (θ + 6º), where 2θ and θ + 6º are acute angles, find the value of θ
What is the value of (cos2 67° – sin2 23°)?
Use trigonometrical tables to find tangent of 37°
If A and B are complementary angles, prove that:
`(sinA + sinB)/(sinA - sinB) + (cosB - cosA)/(cosB + cosA) = 2/(2sin^2A - 1)`
Write the maximum and minimum values of cos θ.
If \[\cos \theta = \frac{2}{3}\] then 2 sec2 θ + 2 tan2 θ − 7 is equal to
Prove that:
\[\left( \frac{\sin49^\circ}{\cos41^\circ} \right)^2 + \left( \frac{\cos41^\circ}{\sin49^\circ} \right)^2 = 2\]
If sin θ =7/25, where θ is an acute angle, find the value of cos θ.
Prove that `"tan A"/"cot A" = (sec^2"A")/("cosec"^2"A")`
In ∆ABC, `sqrt(2)` AC = BC, sin A = 1, sin2A + sin2B + sin2C = 2, then ∠A = ? , ∠B = ?, ∠C = ?