हिंदी

If Cos θ = 2 3 Then 2 Sec2 θ + 2 Tan2 θ − 7 is Equal to - Mathematics

Advertisements
Advertisements

प्रश्न

If \[\cos \theta = \frac{2}{3}\]  then 2 sec2 θ + 2 tan2 θ − 7 is equal to 

विकल्प

  • 0

  •  3

MCQ

उत्तर

Given that:  `cos θ=2/3`

We have to find `2 sec^2 c+2 tan ^2 θ-7`

As we are given 

`cos θ=2/3` 

⇒ `"Base"=2`

⇒ `"Hypotenuse"=3` 

⇒ `"Perpendicular"= sqrt((3)^2-(2)^2)` 

⇒`"Perpendicular"=sqrt5` 

We know that: 

`cos θ="Base"/"Hypotenuse"` 

`tan θ= "Perpendicular"/"Base"` 

Now we have to find:` 2 sec^2θ+2 tan^2 θ-7.` so 

`2 sec^2θ+2 tan ^2 θ-7` 

=`2(3/2)^2+2(sqrt5/2)^2-7` 

= `18/4+10/4-7` 

=`(18+10-28)/4` 

= 0

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Trigonometric Ratios - Exercise 10.5 [पृष्ठ ५८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 10 Trigonometric Ratios
Exercise 10.5 | Q 31 | पृष्ठ ५८

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Express each of the following in terms of trigonometric ratios of angles between 0º and 45º;

(i) cosec 69º + cot 69º

(ii) sin 81º + tan 81º

(iii) sin 72º + cot 72º


Without using trigonometric tables evaluate:

`(sin 65^@)/(cos 25^@) + (cos 32^@)/(sin 58^@) - sin 28^2. sec 62^@ + cosec^2 30^@`


Evaluate.
sin(90° - A) cosA + cos(90° - A) sinA


Evaluate:

`2 tan57^circ/(cot33^circ) - cot70^circ/(tan20^circ) - sqrt(2)  cos45^circ`


Find the value of x, if tan x = `(tan60^circ - tan30^circ)/(1 + tan60^circ tan30^circ)`


Use tables to find sine of 47° 32'


Use tables to find cosine of 2° 4’


Use tables to find cosine of 65° 41’


Use trigonometrical tables to find tangent of 42° 18'


Evaluate:

`sec26^@ sin64^@ + (cosec33^@)/sec57^@`


Evaluate:

`(3sin72^@)/(cos18^@) - sec32^@/(cosec58^@)`


If A and B are complementary angles, prove that:

cosec2 A + cosec2 B = cosec2 A cosec2 B


Find A, if 0° ≤ A ≤ 90° and cos2 A – cos A = 0


If 0° < A < 90°; find A, if `(cos A )/(1 - sin A) + (cos A)/(1 + sin A) = 4` 


What is the maximum value of \[\frac{1}{\sec \theta}\]


If 3 cot θ = 4, find the value of \[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\]


\[\frac{2 \tan 30°}{1 - \tan^2 30°}\]  is equal to ______.


Prove that:
(sin θ + 1 + cos θ) (sin θ − 1 + cos θ) . sec θ cosec θ = 2


A triangle ABC is right-angled at B; find the value of `(sec "A". sin "C" - tan "A". tan "C")/sin "B"`.


Find the value of the following:

`(cos 70^circ)/(sin 20^circ) + (cos 59^circ)/(sin31^circ) + cos theta/(sin(90^circ - theta))- 8cos^2 60^circ`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×