Advertisements
Advertisements
प्रश्न
If \[\cos \theta = \frac{2}{3}\] then 2 sec2 θ + 2 tan2 θ − 7 is equal to
विकल्प
1
0
3
4
उत्तर
Given that: `cos θ=2/3`
We have to find `2 sec^2 c+2 tan ^2 θ-7`
As we are given
`cos θ=2/3`
⇒ `"Base"=2`
⇒ `"Hypotenuse"=3`
⇒ `"Perpendicular"= sqrt((3)^2-(2)^2)`
⇒`"Perpendicular"=sqrt5`
We know that:
`cos θ="Base"/"Hypotenuse"`
`tan θ= "Perpendicular"/"Base"`
Now we have to find:` 2 sec^2θ+2 tan^2 θ-7.` so
`2 sec^2θ+2 tan ^2 θ-7`
=`2(3/2)^2+2(sqrt5/2)^2-7`
= `18/4+10/4-7`
=`(18+10-28)/4`
= 0
APPEARS IN
संबंधित प्रश्न
Express each of the following in terms of trigonometric ratios of angles between 0º and 45º;
(i) cosec 69º + cot 69º
(ii) sin 81º + tan 81º
(iii) sin 72º + cot 72º
Without using trigonometric tables evaluate:
`(sin 65^@)/(cos 25^@) + (cos 32^@)/(sin 58^@) - sin 28^2. sec 62^@ + cosec^2 30^@`
Evaluate.
sin(90° - A) cosA + cos(90° - A) sinA
Evaluate:
`2 tan57^circ/(cot33^circ) - cot70^circ/(tan20^circ) - sqrt(2) cos45^circ`
Find the value of x, if tan x = `(tan60^circ - tan30^circ)/(1 + tan60^circ tan30^circ)`
Use tables to find sine of 47° 32'
Use tables to find cosine of 2° 4’
Use tables to find cosine of 65° 41’
Use trigonometrical tables to find tangent of 42° 18'
Evaluate:
`sec26^@ sin64^@ + (cosec33^@)/sec57^@`
Evaluate:
`(3sin72^@)/(cos18^@) - sec32^@/(cosec58^@)`
If A and B are complementary angles, prove that:
cosec2 A + cosec2 B = cosec2 A cosec2 B
Find A, if 0° ≤ A ≤ 90° and cos2 A – cos A = 0
If 0° < A < 90°; find A, if `(cos A )/(1 - sin A) + (cos A)/(1 + sin A) = 4`
What is the maximum value of \[\frac{1}{\sec \theta}\]
If 3 cot θ = 4, find the value of \[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\]
\[\frac{2 \tan 30°}{1 - \tan^2 30°}\] is equal to ______.
Prove that:
(sin θ + 1 + cos θ) (sin θ − 1 + cos θ) . sec θ cosec θ = 2
A triangle ABC is right-angled at B; find the value of `(sec "A". sin "C" - tan "A". tan "C")/sin "B"`.
Find the value of the following:
`(cos 70^circ)/(sin 20^circ) + (cos 59^circ)/(sin31^circ) + cos theta/(sin(90^circ - theta))- 8cos^2 60^circ`