Advertisements
Advertisements
प्रश्न
\[\frac{2 \tan 30°}{1 - \tan^2 30°}\] is equal to ______.
विकल्प
cos 60°
sin 60°
tan 60°
sin 30°
उत्तर
\[\frac{2 \tan 30°}{1 - \tan^2 30°}\] is equal to tan 60°.
Explanation:
`(2 tan 30°)/(1-tan^2 30°)`
As, tan 30° = `1/sqrt3`
By substituting the value we get,
`= (2 xx 1/sqrt3)/(1-(1/sqrt3)^2)`
`= (2/sqrt3)/((3 - 1)/(3))`
`= 3/sqrt3`
`= (3sqrt3)/3`
`= sqrt3`
And, `sqrt3` = tan 60°.
APPEARS IN
संबंधित प्रश्न
If tan 2θ = cot (θ + 6º), where 2θ and θ + 6º are acute angles, find the value of θ
If sec 4A = cosec (A− 20°), where 4A is an acute angle, find the value of A.
Prove the following trigonometric identities.
(secθ + cosθ) (secθ − cosθ) = tan2θ + sin2θ
if `cos theta = 4/5` find all other trigonometric ratios of angles θ
if `tan theta = 3/4`, find the value of `(1 - cos theta)/(1 +cos theta)`
if `tan theta = 12/5` find the value of `(1 + sin theta)/(1 -sin theta)`
if `sqrt3 tan theta = 3 sin theta` find the value of `sin^2 theta - cos^2 theta`
solve.
cos240° + cos250°
Evaluate.
cos225° + cos265° - tan245°
Find the value of x, if sin x = sin 60° cos 30° + cos 60° sin 30°
If A and B are complementary angles, prove that:
cot B + cos B = sec A cos B (1 + sin B)
Find A, if 0° ≤ A ≤ 90° and sin 3A – 1 = 0
Find the sine ratio of θ in standard position whose terminal arm passes through (3, 4)
If θ is an acute angle such that sec2 θ = 3, then the value of \[\frac{\tan^2 \theta - {cosec}^2 \theta}{\tan^2 \theta + {cosec}^2 \theta}\]
The value of
If θ and 2θ − 45° are acute angles such that sin θ = cos (2θ − 45°), then tan θ is equal to
The value of tan 1° tan 2° tan 3°…. tan 89° is
If sin A = `3/5` then show that 4 tan A + 3 sin A = 6 cos A
If x and y are complementary angles, then ______.