Advertisements
Advertisements
प्रश्न
If sin A = `3/5` then show that 4 tan A + 3 sin A = 6 cos A
उत्तर
sin A = `3/5` ...(i) [Given]
In ∆ABC,
Let ∠ABC = 90°
∴ sin A = `"BC"/"AC"` .....(ii) [By definition]
∴ `"BC"/"AC" = 3/5` ......[From (i) and (ii)]
Let BC = 3k, AC = 5k
In ∆ABC, ∠B = 90°
∴ AB2 + BC2 = AC2 ......[Pythagoras theorem]
∴ AB2 + (3k)2 = (5k)2
∴ AB2 + 9k2 = 25k2
∴ AB2 = 25k2 – 9k2
∴ AB2 = 16k2
∴ AB = 4k ......[Taking square root of both sides]
Now, tan A = `"BC"/"AB"` ......[By definition]
∴ tan A = `(3"k")/(4"k") = 3/4`
cos A = `"AB"/"AC"` ......[By definition]
∴ cos A = `(4"k")/(5"k") = 4/5`
∴ 4 tan A + 3 sin A = `4(3/4) + 3(3/5)`
= `3 + 9/5`
=`(15 + 9)/5`
= `24/5` ......(iii)
6cos A = `6(4/5) = 24/5` ......(iv)
∴ 4 tan A + 3 sin A = 6 cos A .....[From (iii) and (iv)]
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`((1 + cot^2 theta) tan theta)/sec^2 theta = cot theta`
Prove the following trigonometric identities.
(secθ + cosθ) (secθ − cosθ) = tan2θ + sin2θ
if `cos theta = 4/5` find all other trigonometric ratios of angles θ
solve.
sec2 18° - cot2 72°
Find the value of x, if cos x = cos 60° cos 30° – sin 60° sin 30°
Prove that:
`(cos(90^circ - theta)costheta)/cottheta = 1 - cos^2theta`
Use tables to find the acute angle θ, if the value of cos θ is 0.6885
Evaluate:
3 cos 80° cosec 10° + 2 cos 59° cosec 31°
Prove that:
sin (28° + A) = cos (62° – A)
Prove that:
`1/(1 + sin(90^@ - A)) + 1/(1 - sin(90^@ - A)) = 2sec^2(90^@ - A)`
If \[\sec\theta = \frac{13}{12}\], find the values of other trigonometric ratios.
Write the maximum and minimum values of cos θ.
The value of cos2 17° − sin2 73° is
The value of
Prove the following.
tan4θ + tan2θ = sec4θ - sec2θ
Without using trigonometric tables, prove that:
sec70° sin20° + cos20° cosec70° = 2
Express the following in term of angles between 0° and 45° :
sin 59° + tan 63°
Express the following in term of angles between 0° and 45° :
cosec 68° + cot 72°
Evaluate: `3(sin72°)/(cos18°) - (sec32°)/("cosec"58°)`.
The value of cosec(70° + θ) – sec(20° − θ) + tan(65° + θ) – cot(25° − θ) is