हिंदी

If sin A = 35 then show that 4 tan A + 3 sin A = 6 cos A - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

If sin A = `3/5` then show that 4 tan A + 3 sin A = 6 cos A

योग

उत्तर


sin A = `3/5`   ...(i) [Given]

In ∆ABC,

Let ∠ABC = 90°

∴ sin A = `"BC"/"AC"`    .....(ii) [By definition]

∴ `"BC"/"AC" = 3/5`   ......[From (i) and (ii)]

Let BC = 3k, AC = 5k

In ∆ABC, ∠B = 90°

∴ AB2 + BC2 = AC2    ......[Pythagoras theorem]

∴ AB2 + (3k)2 = (5k)2

∴ AB2 + 9k2 = 25k2

∴ AB2 = 25k2 – 9k2

∴ AB2 = 16k2 

∴ AB = 4k    ......[Taking square root of both sides]

Now, tan A = `"BC"/"AB"`  ......[By definition]

∴ tan A = `(3"k")/(4"k") = 3/4`

cos A = `"AB"/"AC"`   ......[By definition]

∴ cos A = `(4"k")/(5"k") = 4/5`

∴ 4 tan A + 3 sin A = `4(3/4) + 3(3/5)`

= `3 + 9/5`

=`(15 + 9)/5`

= `24/5`   ......(iii)

6cos A = `6(4/5) = 24/5`   ......(iv)

∴ 4 tan A + 3 sin A = 6 cos A    .....[From (iii) and (iv)]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Trigonometry - Q.3 (B)

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Prove the following trigonometric identities.

`((1 + cot^2 theta) tan theta)/sec^2 theta = cot theta`


Prove the following trigonometric identities.

(secθ + cosθ) (secθ − cosθ) = tan2θ + sin2θ


if `cos theta = 4/5` find all other trigonometric ratios of angles θ


solve.
sec18° - cot2 72°


Find the value of x, if cos x = cos 60° cos 30° – sin 60° sin 30°


Prove that:

`(cos(90^circ - theta)costheta)/cottheta = 1 - cos^2theta`


Use tables to find the acute angle θ, if the value of cos θ is 0.6885


Evaluate:

3 cos 80° cosec 10° + 2 cos 59° cosec 31°


Prove that:

sin (28° + A) = cos (62° – A)


Prove that:

`1/(1 + sin(90^@ - A)) + 1/(1 - sin(90^@ - A)) = 2sec^2(90^@ - A)`


If \[\sec\theta = \frac{13}{12}\], find the values of other trigonometric ratios.


Write the maximum and minimum values of cos θ.


The value of cos2 17° − sin2 73° is 


The value of

\[\frac{\cos \left( 90°- \theta \right) \sec \left( 90°- \theta \right) \tan \theta}{cosec \left( 90°- \theta \right) \sin \left( 90° - \theta \right) \cot \left( 90°- \theta \right)} + \frac{\tan \left( 90° - \theta \right)}{\cot \theta}\] 

 


Prove the following.

tan4θ + tan2θ = sec4θ - sec2θ


Without using trigonometric tables, prove that:

sec70° sin20° + cos20° cosec70° = 2


Express the following in term of angles between 0° and 45° :

sin 59° + tan 63°


Express the following in term of angles between 0° and 45° :

cosec 68° + cot 72°


Evaluate: `3(sin72°)/(cos18°) - (sec32°)/("cosec"58°)`.


The value of cosec(70° + θ) – sec(20° − θ) + tan(65° + θ) – cot(25° − θ) is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×