Advertisements
Advertisements
प्रश्न
Express the following in term of angles between 0° and 45° :
cosec 68° + cot 72°
उत्तर
cosec 68° + cot 72°
= cosec(90° – 22°) + cot(90° – 18°) ...(∵ cosec(90° – θ) = sec θ and cot(90° – θ) = tan θ)
= sec 22° + tan 18°
APPEARS IN
संबंधित प्रश्न
`(\text{i})\text{ }\frac{\cot 54^\text{o}}{\tan36^\text{o}}+\frac{\tan 20^\text{o}}{\cot 70^\text{o}}-2`
If A, B, C are the interior angles of a triangle ABC, prove that `\tan \frac{B+C}{2}=\cot \frac{A}{2}`
Prove the following trigonometric identities.
`((1 + cot^2 theta) tan theta)/sec^2 theta = cot theta`
if `tan theta = 12/5` find the value of `(1 + sin theta)/(1 -sin theta)`
Evaluate.
`cot54^@/(tan36^@)+tan20^@/(cot70^@)-2`
Express the following in terms of angle between 0° and 45°:
sin 59° + tan 63°
For triangle ABC, show that : `tan (B + C)/2 = cot A/2`
Find the value of x, if sin x = sin 60° cos 30° + cos 60° sin 30°
Use tables to find cosine of 2° 4’
If A and B are complementary angles, prove that:
cosec2 A + cosec2 B = cosec2 A cosec2 B
If the angle θ = –45° , find the value of tan θ.
If tanθ = 2, find the values of other trigonometric ratios.
If \[\tan \theta = \frac{4}{5}\] find the value of \[\frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta}\]
If 3 cot θ = 4, find the value of \[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\]
If \[\tan A = \frac{3}{4} \text{ and } A + B = 90°\] then what is the value of cot B?
If A + B = 90° and \[\tan A = \frac{3}{4}\]\[\tan A = \frac{3}{4}\] what is cot B?
Evaluate: `(cos55°)/(sin 35°) + (cot 35°)/(tan 55°)`
Evaluate: 14 sin 30°+ 6 cos 60°- 5 tan 45°.
The value of (tan1° tan2° tan3° ... tan89°) is ______.