Advertisements
Advertisements
प्रश्न
Find the value of x, if sin x = sin 60° cos 30° + cos 60° sin 30°
उत्तर
sin x = sin 60° cos 30° + cos 60° sin 30°
sin x = `(sqrt3/2)(sqrt3/2) + (1/2)(1/2)`
sin x = `3/4 + 1/4 = 1 = sin 90^circ`
Hence, x = 90°
APPEARS IN
संबंधित प्रश्न
If A, B, C are the interior angles of a triangle ABC, prove that `\tan \frac{B+C}{2}=\cot \frac{A}{2}`
Without using trigonometric tables evaluate:
`(sin 65^@)/(cos 25^@) + (cos 32^@)/(sin 58^@) - sin 28^2. sec 62^@ + cosec^2 30^@`
Evaluate.
`cot54^@/(tan36^@)+tan20^@/(cot70^@)-2`
Evaluate:
`sin80^circ/(cos10^circ) + sin59^circ sec31^circ`
Evaluate:
`(cos75^@)/(sin15^@) + (sin12^@)/(cos78^@) - (cos18^@)/(sin72^@)`
If A and B are complementary angles, prove that:
cot B + cos B = sec A cos B (1 + sin B)
If 4 cos2 A – 3 = 0 and 0° ≤ A ≤ 90°, then prove that sin 3 A = 3 sin A – 4 sin3 A
Write the maximum and minimum values of cos θ.
If tan2 45° − cos2 30° = x sin 45° cos 45°, then x =
The value of 3 sin 70° sec 20° + 2 sin 49° sec 51° is