Advertisements
Advertisements
प्रश्न
Find the value of x, if cos x = cos 60° cos 30° – sin 60° sin 30°
उत्तर
cos x = cos 60° cos 30° – sin 60° sin 30°
cos x = `(1/2)(sqrt3/2) - (sqrt3/2)(1/2)`
cos x = 0 = cos 90°
Hence, x = 90°
APPEARS IN
संबंधित प्रश्न
If tan 2A = cot (A – 18°), where 2A is an acute angle, find the value of A
if `sin theta = 1/sqrt2` find all other trigonometric ratios of angle θ.
Evaluate:
tan(55° - A) - cot(35° + A)
Use tables to find the acute angle θ, if the value of tan θ is 0.2419
Prove that:
tan (55° - A) - cot (35° + A)
If \[\sec\theta = \frac{13}{12}\], find the values of other trigonometric ratios.
∠ACD is an exterior angle of Δ ABC. If ∠B = 40o, ∠A = 70o find ∠ACD.
If \[\frac{160}{3}\] \[\tan \theta = \frac{a}{b}, \text{ then } \frac{a \sin \theta + b \cos \theta}{a \sin \theta - b \cos \theta}\]
Express the following in term of angles between 0° and 45° :
cosec 68° + cot 72°
If y sin 45° cos 45° = tan2 45° – cos2 30°, then y = ______.