Advertisements
Advertisements
प्रश्न
Find the value of x, if cos x = cos 60° cos 30° – sin 60° sin 30°
उत्तर
cos x = cos 60° cos 30° – sin 60° sin 30°
cos x = `(1/2)(sqrt3/2) - (sqrt3/2)(1/2)`
cos x = 0 = cos 90°
Hence, x = 90°
APPEARS IN
संबंधित प्रश्न
Evaluate `(sin 18^@)/(cos 72^@)`
Prove the following trigonometric identities.
(cosecA − sinA) (secA − cosA) (tanA + cotA) = 1
Find the value of angle A, where 0° ≤ A ≤ 90°.
cos (90° – A) . sec 77° = 1
Find A, if 0° ≤ A ≤ 90° and 4 sin2 A – 3 = 0
Write the maximum and minimum values of sin θ.
If \[\tan \theta = \frac{3}{4}\] then cos2 θ − sin2 θ =
If θ is an acute angle such that sec2 θ = 3, then the value of \[\frac{\tan^2 \theta - {cosec}^2 \theta}{\tan^2 \theta + {cosec}^2 \theta}\]
The value of tan 10° tan 15° tan 75° tan 80° is
The value of \[\frac{\tan 55°}{\cot 35°}\] + cot 1° cot 2° cot 3° .... cot 90°, is
Prove that :
tan5° tan25° tan30° tan65° tan85° = \[\frac{1}{\sqrt{3}}\]