Advertisements
Advertisements
प्रश्न
Write the maximum and minimum values of sin θ.
उत्तर
The maximum value of sinθ is 1 and the minimum value of sinθ is because value of sin θ lies between −1 and 11
APPEARS IN
संबंधित प्रश्न
If the angle θ = -60° , find the value of sinθ .
`(\text{i})\text{ }\frac{\cot 54^\text{o}}{\tan36^\text{o}}+\frac{\tan 20^\text{o}}{\cot 70^\text{o}}-2`
Express sin 67° + cos 75° in terms of trigonometric ratios of angles between 0° and 45°
Express the trigonometric ratios sin A, sec A and tan A in terms of cot A.
Prove the following trigonometric identities.
(secθ + cosθ) (secθ − cosθ) = tan2θ + sin2θ
if `cot theta = sqrt3` find the value of `(cosec^2 theta + cot^2 theta)/(cosec^2 theta - sec^2 theta)`
Evaluate:
3cos80° cosec10° + 2 sin59° sec31°
Find the value of angle A, where 0° ≤ A ≤ 90°.
sin (90° – 3A) . cosec 42° = 1
Use tables to find sine of 10° 20' + 20° 45'
Prove that:
sec (70° – θ) = cosec (20° + θ)
Find the sine ratio of θ in standard position whose terminal arm passes through (3, 4)
If tanθ = 2, find the values of other trigonometric ratios.
If 16 cot x = 12, then \[\frac{\sin x - \cos x}{\sin x + \cos x}\]
If \[\tan \theta = \frac{3}{4}\] then cos2 θ − sin2 θ =
The value of tan 1° tan 2° tan 3° ...... tan 89° is
If A, B and C are interior angles of a triangle ABC, then \[\sin \left( \frac{B + C}{2} \right) =\]
If \[\cos \theta = \frac{2}{3}\] then 2 sec2 θ + 2 tan2 θ − 7 is equal to
Express the following in term of angles between 0° and 45° :
sin 59° + tan 63°
If sin θ + sin² θ = 1 then cos² θ + cos4 θ is equal ______.
The value of the expression (cos2 23° – sin2 67°) is positive.