Advertisements
Advertisements
प्रश्न
Express the trigonometric ratios sin A, sec A and tan A in terms of cot A.
उत्तर
We know that
⇒ cosec2 A = 1 + cot2 A
`1/(cosec^2A) = 1/(1+cot^2A)`
`sin^2A = 1/(1+cot^2A)`
`sinA = +- 1/(sqrt(1+cot^2A))`
`sqrt(1+cot^2A)` will always be positive as we are adding two positive quantities.
Therefore
`sin A = 1/sqrt(1+cot^2A)`
we know that
⇒ `tan A = (sin A)/(cos A)`
However
⇒ `cot A = (cos A)/(sin A)`
Therefore, tan A = `1/cot A`
⇒ Also sec2 A = 1 + tan2 A
= `1+ 1/(cot^2A)`
= `(cot^2 A+1)/(cot^2 A)`
`sec A =sqrt(cot^2A+1)/cot A`
APPEARS IN
संबंधित प्रश्न
If the angle θ = -60° , find the value of sinθ .
`(\text{i})\text{ }\frac{\cot 54^\text{o}}{\tan36^\text{o}}+\frac{\tan 20^\text{o}}{\cot 70^\text{o}}-2`
If tan 2A = cot (A – 18°), where 2A is an acute angle, find the value of A
Evaluate `(tan 26^@)/(cot 64^@)`
Without using trigonometric tables evaluate:
`(sin 65^@)/(cos 25^@) + (cos 32^@)/(sin 58^@) - sin 28^2. sec 62^@ + cosec^2 30^@`
if `cos theta = 4/5` find all other trigonometric ratios of angles θ
Solve.
`cos55/sin35+cot35/tan55`
Evaluate.
`(2tan53^@)/(cot37^@)-cot80^@/tan10^@`
Evaluate.
`cos^2 26^@+cos65^@sin26^@+tan36^@/cot54^@`
Show that : `sin26^circ/sec64^circ + cos26^circ/(cosec64^circ) = 1`
Evaluate:
cosec (65° + A) – sec (25° – A)
Find the value of x, if sin x = sin 60° cos 30° – cos 60° sin 30°
Use tables to find sine of 47° 32'
Use tables to find cosine of 2° 4’
Use trigonometrical tables to find tangent of 37°
Use trigonometrical tables to find tangent of 17° 27'
Use tables to find the acute angle θ, if the value of sin θ is 0.4848
Use tables to find the acute angle θ, if the value of tan θ is 0.7391
Prove that:
sec (70° – θ) = cosec (20° + θ)
Find A, if 0° ≤ A ≤ 90° and 4 sin2 A – 3 = 0
If \[\sec\theta = \frac{13}{12}\], find the values of other trigonometric ratios.
Write the maximum and minimum values of sin θ.
What is the maximum value of \[\frac{1}{\sec \theta}\]
If \[\tan \theta = \frac{4}{5}\] find the value of \[\frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta}\]
If \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\] write the value of \[\frac{1 - \cos^2 \theta}{2 - \sin^2 \theta}\]
If A + B = 90° and \[\cos B = \frac{3}{5}\] what is the value of sin A?
If 5 tan θ − 4 = 0, then the value of \[\frac{5 \sin \theta - 4 \cos \theta}{5 \sin \theta + 4 \cos \theta}\] is:
If \[\tan \theta = \frac{1}{\sqrt{7}}, \text{ then } \frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta} =\]
If \[\tan \theta = \frac{3}{4}\] then cos2 θ − sin2 θ =
The value of cos2 17° − sin2 73° is
The value of cos 1° cos 2° cos 3° ..... cos 180° is
If \[\cos \theta = \frac{2}{3}\] then 2 sec2 θ + 2 tan2 θ − 7 is equal to
A, B and C are interior angles of a triangle ABC. Show that
If ∠A = 90°, then find the value of tan`(("B+C")/2)`
Evaluate:
3 cos 80° cosec 10°+ 2 sin 59° sec 31°
Evaluate: `2(tan57°)/(cot33°) - (cot70°)/(tan20°) - sqrt(2) cos 45°`
The value of cosec(70° + θ) – sec(20° − θ) + tan(65° + θ) – cot(25° − θ) is
If sin θ + sin² θ = 1 then cos² θ + cos4 θ is equal ______.
If A, B and C are interior angles of a ΔABC then `cos (("B + C")/2)` is equal to ______.