Advertisements
Advertisements
प्रश्न
What is the maximum value of \[\frac{1}{\sec \theta}\]
उत्तर
The maximum value of `1/secθ` is 1 because the maximum value of cosθ is 1 that is `1/ secθ=cosθ `
`1/sec θ=1`
APPEARS IN
संबंधित प्रश्न
if `sin theta = 1/sqrt2` find all other trigonometric ratios of angle θ.
if `cosec A = sqrt2` find the value of `(2 sin^2 A + 3 cot^2 A)/(4(tan^2 A - cos^2 A))`
For triangle ABC, show that : `sin (A + B)/2 = cos C/2`
Evaluate:
`3 sin72^circ/(cos18^circ) - sec32^circ/(cosec58^circ)`
Evaluate:
tan(55° - A) - cot(35° + A)
Find the value of x, if cos (2x – 6) = cos2 30° – cos2 60°
Use trigonometrical tables to find tangent of 17° 27'
Evaluate:
cos 40° cosec 50° + sin 50° sec 40°
If the angle θ = –45° , find the value of tan θ.
What is the maximum value of \[\frac{1}{\sec \theta}\]
If A + B = 90° and \[\tan A = \frac{3}{4}\]\[\tan A = \frac{3}{4}\] what is cot B?
The value of \[\frac{\cos^3 20°- \cos^3 70°}{\sin^3 70° - \sin^3 20°}\]
The value of cos 1° cos 2° cos 3° ..... cos 180° is
If θ and 2θ − 45° are acute angles such that sin θ = cos (2θ − 45°), then tan θ is equal to
Evaluate: cos2 25° - sin2 65° - tan2 45°
Express the following in term of angles between 0° and 45° :
cosec 68° + cot 72°
Evaluate: `3(sin72°)/(cos18°) - (sec32°)/("cosec"58°)`.
Find the value of the following:
sin 21° 21′
In ∆ABC, cos C = `12/13` and BC = 24, then AC = ?
The value of (tan1° tan2° tan3° ... tan89°) is ______.