Advertisements
Advertisements
प्रश्न
if `cosec A = sqrt2` find the value of `(2 sin^2 A + 3 cot^2 A)/(4(tan^2 A - cos^2 A))`
उत्तर
Given `cosec A = sqrt2`
We have to find the value of the expression `(2 sin^2 A + 3 cot^2 A)/(4(tan^2 A - cos^2 A))`
We know that
`cosec A =sqrt2`
`=> sin A = 1/(cosec A) = 1/sqrt2`
`cos A = sqrt(1 - sin^2 A) = sqrt(1 - (1/sqrt2)^2) = 1/sqrt2`
`tan A = sin A/cos A = (1/sqrt2)/(1/sqrt2) = 1`
`cot A = 1/tan A = 1/1 = 1`
Therefore,
`(2 sin^2 A + 3 cot^2 A)/(4(tan^2 A - cos^2 A)) = (2 xx (1/sqrt2)^2 + 3 xx 1^2)/(4(1^2 - (1/sqrt2)^2))`
= 2
Hence, the value of the given expression is 2
APPEARS IN
संबंधित प्रश्न
if `sin theta = 1/sqrt2` find all other trigonometric ratios of angle θ.
Evaluate.
`(2tan53^@)/(cot37^@)-cot80^@/tan10^@`
Express the following in terms of angles between 0° and 45°:
cosec68° + cot72°
Evaluate:
`(cot^2 41^circ)/(tan^2 49^circ) - 2 sin^2 75^circ/cos^2 15^circ`
Evaluate:
14 sin 30° + 6 cos 60° – 5 tan 45°
Prove that:
`(cos(90^circ - theta)costheta)/cottheta = 1 - cos^2theta`
Use trigonometrical tables to find tangent of 37°
Prove that:
`1/(1 + cos(90^@ - A)) + 1/(1 - cos(90^@ - A)) = 2cosec^2(90^@ - A)`
Find A, if 0° ≤ A ≤ 90° and 2 cos2 A – 1 = 0
If tanθ = 2, find the values of other trigonometric ratios.
If 16 cot x = 12, then \[\frac{\sin x - \cos x}{\sin x + \cos x}\]
If x sin (90° − θ) cot (90° − θ) = cos (90° − θ), then x =
If x tan 45° cos 60° = sin 60° cot 60°, then x is equal to
If angles A, B, C to a ∆ABC from an increasing AP, then sin B =
Prove that:
cos15° cos35° cosec55° cos60° cosec75° = \[\frac{1}{2}\]
Evaluate: cos2 25° - sin2 65° - tan2 45°
Find the value of the following:
`((cos 47^circ)/(sin 43^circ))^2 + ((sin 72^circ)/(cos 18^circ))^2 - 2cos^2 45^circ`
The value of tan 1° tan 2° tan 3°…. tan 89° is
If tan θ = 1, then sin θ . cos θ = ?
If sec A + tan A = x, then sec A = ______.