Advertisements
Advertisements
प्रश्न
If tan θ = 1, then sin θ . cos θ = ?
उत्तर
tan θ = 1 ......[Given]
∴ θ = 45° ......[∵ tan45° = 1]
∴ sin θ . cos θ = sin 45° cos 45°
= `1/sqrt(2)*1/sqrt(2)`
= `1/2`
APPEARS IN
संबंधित प्रश्न
If the angle θ = -60° , find the value of sinθ .
if `tan theta = 1/sqrt2` find the value of `(cosec^2 theta - sec^2 theta)/(cosec^2 theta + cot^2 theta)`
if `cosec A = sqrt2` find the value of `(2 sin^2 A + 3 cot^2 A)/(4(tan^2 A - cos^2 A))`
solve.
sec2 18° - cot2 72°
Express the following in terms of angles between 0° and 45°:
cosec68° + cot72°
Evaluate:
3cos80° cosec10° + 2 sin59° sec31°
Use tables to find the acute angle θ, if the value of sin θ is 0.4848
Use tables to find the acute angle θ, if the value of sin θ is 0.6525
Prove that:
tan (55° - A) - cot (35° + A)
If A and B are complementary angles, prove that:
cosec2 A + cosec2 B = cosec2 A cosec2 B
If 4 cos2 A – 3 = 0 and 0° ≤ A ≤ 90°, then prove that cos 3 A = 4 cos3 A – 3 cos A
If tanθ = 2, find the values of other trigonometric ratios.
If \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\] write the value of \[\frac{1 - \cos^2 \theta}{2 - \sin^2 \theta}\]
If A + B = 90° and \[\cos B = \frac{3}{5}\] what is the value of sin A?
tan 5° ✕ tan 30° ✕ 4 tan 85° is equal to
If ∆ABC is right angled at C, then the value of cos (A + B) is ______.
Find the sine ratio of θ in standard position whose terminal arm passes through (4,3)
Evaluate: `3(sin72°)/(cos18°) - (sec32°)/("cosec"58°)`.
Find the value of the following:
sin 21° 21′