Advertisements
Advertisements
प्रश्न
tan 5° ✕ tan 30° ✕ 4 tan 85° is equal to
पर्याय
`4/sqrt3`
`4sqrt3`
1
4
उत्तर
We have to find `tan 5°xx tan 30° xx4 tan 85°`
We know that
`tan (90°-θ)=cot-θ`
`tan θ cot -θ=1`
`tan 30°=1/sqrt3`
so
`tan 5° xx tan 30° xx 4 tan 85°`
=` tan (90°-85°)xx tan 30°xx4 tan 85°`
= `cot 85° xx tan 30°xx4 tan 85°`
=` 4 cot 85° xx tan 85° tan 30°`
= `4xx1xx1/sqrt3`
= `4/sqrt3`
APPEARS IN
संबंधित प्रश्न
`(\text{i})\text{ }\frac{\cot 54^\text{o}}{\tan36^\text{o}}+\frac{\tan 20^\text{o}}{\cot 70^\text{o}}-2`
Express each of the following in terms of trigonometric ratios of angles between 0º and 45º;
(i) cosec 69º + cot 69º
(ii) sin 81º + tan 81º
(iii) sin 72º + cot 72º
if `sin theta = 1/sqrt2` find all other trigonometric ratios of angle θ.
Solve.
`cos55/sin35+cot35/tan55`
Evaluate:
tan(55° - A) - cot(35° + A)
Evaluate:
`cos70^circ/(sin20^circ) + cos59^circ/(sin31^circ) - 8 sin^2 30^circ`
Use tables to find sine of 10° 20' + 20° 45'
Use tables to find the acute angle θ, if the value of sin θ is 0.4848
If A and B are complementary angles, prove that:
cosec2 A + cosec2 B = cosec2 A cosec2 B
Find A, if 0° ≤ A ≤ 90° and sin 3A – 1 = 0
If 0° < A < 90°; find A, if `sinA/(secA - 1) + sinA/(secA + 1) = 2`
Find the sine ratio of θ in standard position whose terminal arm passes through (3, 4)
Write the maximum and minimum values of sin θ.
If θ is an acute angle such that \[\tan^2 \theta = \frac{8}{7}\] then the value of \[\frac{\left( 1 + \sin \theta \right) \left( 1 - \sin \theta \right)}{\left( 1 + \cos \theta \right) \left( 1 - \cos \theta \right)}\]
If x sin (90° − θ) cot (90° − θ) = cos (90° − θ), then x =
Prove that :
tan5° tan25° tan30° tan65° tan85° = \[\frac{1}{\sqrt{3}}\]
Evaluate: `2(tan57°)/(cot33°) - (cot70°)/(tan20°) - sqrt(2) cos 45°`
In the case, given below, find the value of angle A, where 0° ≤ A ≤ 90°.
cos(90° - A) · sec 77° = 1
Prove that `"tan A"/"cot A" = (sec^2"A")/("cosec"^2"A")`