मराठी

Tan 5° ✕ Tan 30° ✕ 4 Tan 85° is Equal to - Mathematics

Advertisements
Advertisements

प्रश्न

tan 5° ✕ tan 30° ✕ 4 tan 85° is equal to 

पर्याय

  • `4/sqrt3`

  • `4sqrt3`

  • 1

  • 4

MCQ

उत्तर

We have to find `tan 5°xx tan 30° xx4 tan 85°` 

We know that 

`tan (90°-θ)=cot-θ` 

`tan  θ cot -θ=1` 

`tan 30°=1/sqrt3` 

so 

`tan 5° xx tan 30° xx 4 tan 85°` 

=` tan (90°-85°)xx tan 30°xx4 tan 85°` 

= `cot 85° xx tan 30°xx4 tan 85°` 

=` 4 cot 85° xx tan 85° tan 30°` 

= `4xx1xx1/sqrt3`  

= `4/sqrt3` 

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Trigonometric Ratios - Exercise 10.5 [पृष्ठ ५८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 10 Trigonometric Ratios
Exercise 10.5 | Q 32 | पृष्ठ ५८

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

`(\text{i})\text{ }\frac{\cot 54^\text{o}}{\tan36^\text{o}}+\frac{\tan 20^\text{o}}{\cot 70^\text{o}}-2`


Express each of the following in terms of trigonometric ratios of angles between 0º and 45º;

(i) cosec 69º + cot 69º

(ii) sin 81º + tan 81º

(iii) sin 72º + cot 72º


if `sin theta = 1/sqrt2`  find all other trigonometric ratios of angle θ.


Solve.
`cos55/sin35+cot35/tan55`


Evaluate:

tan(55° - A) - cot(35° + A)


Evaluate:

`cos70^circ/(sin20^circ) + cos59^circ/(sin31^circ) - 8 sin^2 30^circ`


Use tables to find sine of 10° 20' + 20° 45'


Use tables to find the acute angle θ, if the value of sin θ is 0.4848


If A and B are complementary angles, prove that:

cosec2 A + cosec2 B = cosec2 A cosec2 B


Find A, if 0° ≤ A ≤ 90° and sin 3A – 1 = 0


If 0° < A < 90°; find A, if `sinA/(secA - 1) + sinA/(secA + 1) = 2`


Find the sine ratio of θ in standard position whose terminal arm passes through (3, 4)


Write the maximum and minimum values of sin θ.


If θ is an acute angle such that \[\tan^2 \theta = \frac{8}{7}\] then the value of \[\frac{\left( 1 + \sin \theta \right) \left( 1 - \sin \theta \right)}{\left( 1 + \cos \theta \right) \left( 1 - \cos \theta \right)}\]


If x sin (90° − θ) cot (90° − θ) = cos (90° − θ), then x =


Prove that :

tan5° tan25° tan30° tan65° tan85° = \[\frac{1}{\sqrt{3}}\]


Evaluate: `2(tan57°)/(cot33°) - (cot70°)/(tan20°) - sqrt(2) cos 45°`


In the case, given below, find the value of angle A, where 0° ≤ A ≤ 90°.

cos(90° - A) · sec 77° = 1


Prove that `"tan A"/"cot A" = (sec^2"A")/("cosec"^2"A")`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×