Advertisements
Advertisements
प्रश्न
Prove that `"tan A"/"cot A" = (sec^2"A")/("cosec"^2"A")`
उत्तर
R.H.S = `(sec^2"A")/("cosec"^2"A")`
= `(1 + tan^2"A")/(1 + cot^2"A")` .....`[(because 1 + tan^2"A" = sec^2"A"),(1 + cot^2"A" = "cosec"^2"A")]`
= `(1 + (sin^2"A")/(cos^2"A"))/(1 + (cos^2"A")/(sin^2"A"))`
= `((cos^2"A" + sin^2"A")/(cos^2"A"))/((sin^2"A" + cos^2"A")/(sin^2"A"))`
= `(1/(cos^2"A"))/(1/(sin^2"A"))` .......[∵ sin2A + cos2A = 1]
= `(sin^2"A")/(cos^2"A")`
= tan2A
= tan A . tan A
= `"tan A"/"cot A"`
= L.H.S
∴ `"tan A"/"cot A" = (sec^2"A")/("cosec"^2"A")`
APPEARS IN
संबंधित प्रश्न
If tan 2θ = cot (θ + 6º), where 2θ and θ + 6º are acute angles, find the value of θ
If tan 2A = cot (A – 18°), where 2A is an acute angle, find the value of A
Show that cos 38° cos 52° − sin 38° sin 52° = 0
if `cot theta = 1/sqrt3` find the value of `(1 - cos^2 theta)/(2 - sin^2 theta)`
if `cot theta = sqrt3` find the value of `(cosec^2 theta + cot^2 theta)/(cosec^2 theta - sec^2 theta)`
Evaluate.
`(cos^2 32^@+cos^2 58^@)/(sin^2 59^@+sin^2 31^@)`
Evaluate:
`sin80^circ/(cos10^circ) + sin59^circ sec31^circ`
Use tables to find cosine of 2° 4’
Evaluate:
cos 40° cosec 50° + sin 50° sec 40°
Prove that:
sec (70° – θ) = cosec (20° + θ)
If A and B are complementary angles, prove that:
cosec2 A + cosec2 B = cosec2 A cosec2 B
Find A, if 0° ≤ A ≤ 90° and 2 cos2 A – 1 = 0
If 0° < A < 90°; find A, if `sinA/(secA - 1) + sinA/(secA + 1) = 2`
If 3 cot θ = 4, find the value of \[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\]
If 8 tan x = 15, then sin x − cos x is equal to
If tan2 45° − cos2 30° = x sin 45° cos 45°, then x =
The value of \[\frac{\tan 55°}{\cot 35°}\] + cot 1° cot 2° cot 3° .... cot 90°, is
Express the following in term of angles between 0° and 45° :
sin 59° + tan 63°
Choose the correct alternative:
If ∠A = 30°, then tan 2A = ?