Advertisements
Advertisements
प्रश्न
Prove that sec2θ − cos2θ = tan2θ + sin2θ
उत्तर
L.H.S = sec2θ − cos2θ
= 1 + tan2θ – cos2θ .......[∵ 1 + tan2θ = sec2θ]
= tan2θ + (1 – cos2θ)
= tan2θ + sin2θ ......`[(because sin^2theta +cos^2theta = 1),(therefore 1 - cos^2theta = sin^2theta)]`
= R.H.S
∴ sec2θ − cos2θ = tan2θ + sin2θ
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`tan theta/(1 - cot theta) + cot theta/(1 - tan theta) = 1 + tan theta + cot theta`
Prove the following trigonometric identities.
`(1 + cos theta + sin theta)/(1 + cos theta - sin theta) = (1 + sin theta)/cos theta`
if `cosec theta - sin theta = a^3`, `sec theta - cos theta = b^3` prove that `a^2 b^2 (a^2 + b^2) = 1`
Prove the following identities:
(cos A + sin A)2 + (cos A – sin A)2 = 2
If sec A + tan A = p, show that:
`sin A = (p^2 - 1)/(p^2 + 1)`
`sqrt((1-cos theta)/(1+cos theta)) = (cosec theta - cot theta)`
`(sin theta +cos theta )/(sin theta - cos theta)+(sin theta- cos theta)/(sin theta + cos theta) = 2/((sin^2 theta - cos ^2 theta)) = 2/((2 sin^2 theta -1))`
`(1+ tan theta + cot theta )(sintheta - cos theta) = ((sec theta)/ (cosec^2 theta)-( cosec theta)/(sec^2 theta))`
Write the value of `4 tan^2 theta - 4/ cos^2 theta`
If 5 `tan theta = 4,"write the value of" ((cos theta - sintheta))/(( cos theta + sin theta))`
Prove that secθ + tanθ =`(costheta)/(1-sintheta)`.
Prove the following identity :
`cosA/(1 - tanA) + sin^2A/(sinA - cosA) = cosA + sinA`
If x = asecθ + btanθ and y = atanθ + bsecθ , prove that `x^2 - y^2 = a^2 - b^2`
If sec θ = x + `1/(4"x"), x ≠ 0,` find (sec θ + tan θ)
If x = h + a cos θ, y = k + b sin θ.
Prove that `((x - h)/a)^2 + ((y - k)/b)^2 = 1`.
If A + B = 90°, show that sec2 A + sec2 B = sec2 A. sec2 B.
Prove that: `(sin θ - 2sin^3 θ)/(2 cos^3 θ - cos θ) = tan θ`.
Prove that `sqrt(sec^2 theta + "cosec"^2 theta) = tan theta + cot theta`
If sinθ = `11/61`, then find the value of cosθ using the trigonometric identity.
Statement 1: sin2θ + cos2θ = 1
Statement 2: cosec2θ + cot2θ = 1
Which of the following is valid?