मराठी

Prove the Following Trigonometric Identities. (1 + Cos Theta + Sin Theta)/(1 + Cos Theta - Sin Theta) = (1 + Sin Theta)/Cos Theta - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following trigonometric identities.

`(1 + cos theta + sin theta)/(1 + cos theta - sin theta) = (1 + sin theta)/cos theta`

उत्तर

We have to prove the following identity

`(1 + cos theta + sin theta)/(1 + cos theta - sin theta) = (1 + sin theta)/cos theta`

Consider the LHS = `(1 + cos theta + sin theta)/(1 + cos theta - sin theta)`

`= ((1 + cos theta + sin theta)/(1 + cos theta - sin theta))((1 + cos theta + sin theta)/(1 + cos theta + sin theta))`

`= (1 + cos theta + sin theta)^2/((1 + cos theta)^2 sin^2 theta)`

`= (2 + 2(cos theta + sin theta + sin theta cos theta))/(2 cos^2 theta + 2 cos theta)`

`= (2(1 + cos theta)(1 + sin theta))/(2 cos theta (1 + cos theta))`

`= (1 + sin theta)/cos theta`

= RHS

Hence proved

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 11 Trigonometric Identities
Exercise 11.1 | Q 47.1 | पृष्ठ ४५

संबंधित प्रश्‍न

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(cos A-sinA+1)/(cosA+sinA-1)=cosecA+cotA ` using the identity cosec2 A = 1 cot2 A.


Prove the following trigonometric identities.

`(1 - tan^2 A)/(cot^2 A -1) = tan^2 A`


Prove that  `(sec theta - 1)/(sec theta + 1) = ((sin theta)/(1 + cos theta))^2` 


Prove the following identities:

`1/(1 - sinA) + 1/(1 + sinA) = 2sec^2A`


If m = a sec A + b tan A and n = a tan A + b sec A, then prove that : m2 – n2 = a2 – b2


Prove the following identities:

`1 - sin^2A/(1 + cosA) = cosA`


`((sin A-  sin B ))/(( cos A + cos B ))+ (( cos A - cos B ))/(( sinA + sin B ))=0` 


If \[\cos A = \frac{7}{25}\]  find the value of tan A + cot A. 


\[\frac{1 - \sin \theta}{\cos \theta}\] is equal to


(cosec θ − sin θ) (sec θ − cos θ) (tan θ + cot θ) is equal to


Simplify 

sin A `[[sinA   -cosA],["cos A"  " sinA"]] + cos A[[ cos A" sin A " ],[-sin A" cos A"]]`


Prove the following identity :

secA(1 - sinA)(secA + tanA) = 1


Prove the following identity :

`cosec^4A - cosec^2A = cot^4A + cot^2A`


Prove the following identity : 

`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`


If sec θ = x + `1/(4"x"), x ≠ 0,` find (sec θ + tan θ)


Prove that `( tan A + sec A - 1)/(tan A - sec A + 1) = (1 + sin A)/cos A`.


Prove that `(sin 70°)/(cos 20°) + (cosec 20°)/(sec 70°) - 2 cos 70° xx cosec 20°` = 0.


Prove the following identities.

`sqrt((1 + sin theta)/(1 - sin theta)` = sec θ + tan θ


If sec θ + tan θ = `sqrt(3)`, complete the activity to find the value of sec θ – tan θ

Activity:

`square` = 1 + tan2θ    ......[Fundamental trigonometric identity]

`square` – tan2θ = 1

(sec θ + tan θ) . (sec θ – tan θ) = `square`

`sqrt(3)*(sectheta - tan theta)` = 1

(sec θ – tan θ) = `square`


`1/sin^2θ - 1/cos^2θ - 1/tan^2θ - 1/cot^2θ - 1/sec^2θ - 1/("cosec"^2θ) = -3`, then find the value of θ.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×