Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
`(1 + cos theta + sin theta)/(1 + cos theta - sin theta) = (1 + sin theta)/cos theta`
उत्तर
We have to prove the following identity
`(1 + cos theta + sin theta)/(1 + cos theta - sin theta) = (1 + sin theta)/cos theta`
Consider the LHS = `(1 + cos theta + sin theta)/(1 + cos theta - sin theta)`
`= ((1 + cos theta + sin theta)/(1 + cos theta - sin theta))((1 + cos theta + sin theta)/(1 + cos theta + sin theta))`
`= (1 + cos theta + sin theta)^2/((1 + cos theta)^2 sin^2 theta)`
`= (2 + 2(cos theta + sin theta + sin theta cos theta))/(2 cos^2 theta + 2 cos theta)`
`= (2(1 + cos theta)(1 + sin theta))/(2 cos theta (1 + cos theta))`
`= (1 + sin theta)/cos theta`
= RHS
Hence proved
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(cos A-sinA+1)/(cosA+sinA-1)=cosecA+cotA ` using the identity cosec2 A = 1 cot2 A.
Prove the following trigonometric identities.
`(1 - tan^2 A)/(cot^2 A -1) = tan^2 A`
Prove that `(sec theta - 1)/(sec theta + 1) = ((sin theta)/(1 + cos theta))^2`
Prove the following identities:
`1/(1 - sinA) + 1/(1 + sinA) = 2sec^2A`
If m = a sec A + b tan A and n = a tan A + b sec A, then prove that : m2 – n2 = a2 – b2
Prove the following identities:
`1 - sin^2A/(1 + cosA) = cosA`
`((sin A- sin B ))/(( cos A + cos B ))+ (( cos A - cos B ))/(( sinA + sin B ))=0`
If \[\cos A = \frac{7}{25}\] find the value of tan A + cot A.
\[\frac{1 - \sin \theta}{\cos \theta}\] is equal to
(cosec θ − sin θ) (sec θ − cos θ) (tan θ + cot θ) is equal to
Simplify
sin A `[[sinA -cosA],["cos A" " sinA"]] + cos A[[ cos A" sin A " ],[-sin A" cos A"]]`
Prove the following identity :
secA(1 - sinA)(secA + tanA) = 1
Prove the following identity :
`cosec^4A - cosec^2A = cot^4A + cot^2A`
Prove the following identity :
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
If sec θ = x + `1/(4"x"), x ≠ 0,` find (sec θ + tan θ)
Prove that `( tan A + sec A - 1)/(tan A - sec A + 1) = (1 + sin A)/cos A`.
Prove that `(sin 70°)/(cos 20°) + (cosec 20°)/(sec 70°) - 2 cos 70° xx cosec 20°` = 0.
Prove the following identities.
`sqrt((1 + sin theta)/(1 - sin theta)` = sec θ + tan θ
If sec θ + tan θ = `sqrt(3)`, complete the activity to find the value of sec θ – tan θ
Activity:
`square` = 1 + tan2θ ......[Fundamental trigonometric identity]
`square` – tan2θ = 1
(sec θ + tan θ) . (sec θ – tan θ) = `square`
`sqrt(3)*(sectheta - tan theta)` = 1
(sec θ – tan θ) = `square`
`1/sin^2θ - 1/cos^2θ - 1/tan^2θ - 1/cot^2θ - 1/sec^2θ - 1/("cosec"^2θ) = -3`, then find the value of θ.