Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
`(1 + cos theta + sin theta)/(1 + cos theta - sin theta) = (1 + sin theta)/cos theta`
उत्तर
We have to prove the following identity
`(1 + cos theta + sin theta)/(1 + cos theta - sin theta) = (1 + sin theta)/cos theta`
Consider the LHS = `(1 + cos theta + sin theta)/(1 + cos theta - sin theta)`
`= ((1 + cos theta + sin theta)/(1 + cos theta - sin theta))((1 + cos theta + sin theta)/(1 + cos theta + sin theta))`
`= (1 + cos theta + sin theta)^2/((1 + cos theta)^2 sin^2 theta)`
`= (2 + 2(cos theta + sin theta + sin theta cos theta))/(2 cos^2 theta + 2 cos theta)`
`= (2(1 + cos theta)(1 + sin theta))/(2 cos theta (1 + cos theta))`
`= (1 + sin theta)/cos theta`
= RHS
Hence proved
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
`(sintheta - 2sin^3theta)/(2costheta - costheta) =tan theta`
Prove the following trigonometric identities.
`(cot A + tan B)/(cot B + tan A) = cot A tan B`
Prove the following identities:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`
If sec A + tan A = p, show that:
`sin A = (p^2 - 1)/(p^2 + 1)`
`{1/((sec^2 theta- cos^2 theta))+ 1/((cosec^2 theta - sin^2 theta))} ( sin^2 theta cos^2 theta) = (1- sin^2 theta cos ^2 theta)/(2+ sin^2 theta cos^2 theta)`
Show that none of the following is an identity:
`tan^2 theta + sin theta = cos^2 theta`
Write the value of `(sin^2 theta 1/(1+tan^2 theta))`.
If `sec theta = x ,"write the value of tan" theta`.
What is the value of (1 + tan2 θ) (1 − sin θ) (1 + sin θ)?
Prove the following identity :
`(1 + sinA)/(1 - sinA) = (cosecA + 1)/(cosecA - 1)`
Prove the following identity :
`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`
Prove that `sin(90^circ - A).cos(90^circ - A) = tanA/(1 + tan^2A)`
Prove that (sin θ + cosec θ)2 + (cos θ + sec θ)2 = 7 + tan2 θ + cot2 θ.
Prove that `(cot "A" + "cosec A" - 1)/(cot "A" - "cosec A" + 1) = (1 + cos "A")/sin "A"`
Prove that `( tan A + sec A - 1)/(tan A - sec A + 1) = (1 + sin A)/cos A`.
If sin θ + cos θ = `sqrt(3)`, then prove that tan θ + cot θ = 1
If a cos θ – b sin θ = c, then prove that (a sin θ + b cos θ) = `± sqrt("a"^2 + "b"^2 -"c"^2)`
Prove that cos2θ . (1 + tan2θ) = 1. Complete the activity given below.
Activity:
L.H.S = `square`
= `cos^2theta xx square .....[1 + tan^2theta = square]`
= `(cos theta xx square)^2`
= 12
= 1
= R.H.S
Prove that
sec2A – cosec2A = `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")`
If tan θ = 3, then `(4 sin theta - cos theta)/(4 sin theta + cos theta)` is equal to ______.