हिंदी

Prove that (Sin θ + Cosec θ)2 + (Cos θ + Sec θ)2 = 7 + Tan2 θ + Cot2 θ. - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that (sin θ + cosec θ)2 + (cos θ + sec θ)2 = 7 + tanθ + cotθ. 

योग

उत्तर १

L.H.S = (sin θ + cosec θ)2 + (cos θ + sec θ)2 

= (sin2θ + cosec2θ + 2 sin θ cosec θ + cos2θ + sec2θ + 2cos θ sec θ)

= (sin2θ + cos2θ) + (cosec2θ + sec2θ) + 2 sin θ `(1/("sin"theta)) + 2 cos theta (1/("cos" theta))`

= (1) + (1 + cot2θ + 1 + tan2θ) + (2) + (2)

= 7 + tan2θ + cot2θ 

= R.H.S

shaalaa.com

उत्तर २

L.H.S = (sin θ + cosec θ)2 + (cos θ + sec θ)2 

= (sin2θ + cosec2θ + 2 sin θ cosec θ + cos2θ + sec2θ + 2cos θ sec θ)

= (sin2θ + cos2θ ) + 1 + cot2θ + 2 sin θ x `1/sin θ` + 1 + tan2 θ + 2cos θ. `1/cos θ`

= 1 + 1 + 1 + 2 + 2 + tan2 θ + cot2θ

= 7 + tan2 θ + cot2θ

= RHS

Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 18: Trigonometry - Exercise 2

APPEARS IN

आईसीएसई Mathematics [English] Class 10
अध्याय 18 Trigonometry
Exercise 2 | Q 64.4

संबंधित प्रश्न

Prove that:

sec2θ + cosec2θ = sec2θ x cosec2θ


Prove the following trigonometric identities:

(i) (1 – sin2θ) sec2θ = 1

(ii) cos2θ (1 + tan2θ) = 1


 Evaluate sin25° cos65° + cos25° sin65°


if `cos theta = 5/13` where `theta` is an acute angle. Find the value of `sin theta`


The angles of depression of two ships A and B as observed from the top of a light house 60 m high are 60° and 45° respectively. If the two ships are on the opposite sides of the light house, find the distance between the two ships. Give your answer correct to the nearest whole number.


As observed from the top of an 80 m tall lighthouse, the angles of depression of two ships on the same side of the lighthouse of the horizontal line with its base are 30° and 40° respectively. Find the distance between the two ships. Give your answer correct to the nearest meter.


Prove the following trigonometric identities.

`(1 + tan^2 A) + (1 + 1/tan^2 A) = 1/(sin^2 A - sin^4 A)`


Prove the following trigonometric identities.

(sec A + tan A − 1) (sec A − tan A + 1) = 2 tan A


Prove the following identities:

`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`


Prove the following identities:

cosec A(1 + cos A) (cosec A – cot A) = 1


If x = r sin A cos B, y = r sin A sin B and z = r cos A, then prove that : x2 + y2 + z2 = r2


(i)` (1-cos^2 theta )cosec^2theta = 1`


If `(x/a sin a - y/b cos theta) = 1 and (x/a cos theta + y/b sin theta ) =1, " prove that "(x^2/a^2 + y^2/b^2 ) =2`


If m = ` ( cos theta - sin theta ) and n = ( cos theta +  sin theta ) "then show that" sqrt(m/n) + sqrt(n/m) = 2/sqrt(1-tan^2 theta)`.


Write the value of `sin theta cos ( 90° - theta )+ cos theta sin ( 90° - theta )`. 


What is the value of (1 + cot2 θ) sin2 θ?


What is the value of 9cot2 θ − 9cosec2 θ? 


Prove the following identity :

`(1 - tanA)^2 + (1 + tanA)^2 = 2sec^2A`


Prove the following identity : 

`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`


Prove the following identity :

`(secA - 1)/(secA + 1) = sin^2A/(1 + cosA)^2`


Prove the following identity :

`(cos^3θ + sin^3θ)/(cosθ + sinθ) + (cos^3θ - sin^3θ)/(cosθ - sinθ) = 2`


If tanA + sinA = m and tanA - sinA = n , prove that (`m^2 - n^2)^2` = 16mn 


Without using trigonometric table , evaluate : 

`sin72^circ/cos18^circ  - sec32^circ/(cosec58^circ)`


If x = r sin θ cos Φ, y = r sin θ sin Φ and z = r cos θ, prove that x2 + y2 + z2 = r2


Prove that `(cos θ)/(1 - sin θ) = (1 + sin θ)/(cos θ)`.


Prove the following identities: sec2 θ + cosec2 θ = sec2 θ cosec2 θ.


If sin θ + cos θ = `sqrt(3)`, then prove that tan θ + cot θ = 1


Given that sinθ + 2cosθ = 1, then prove that 2sinθ – cosθ = 2.


Prove that (sec θ + tan θ) (1 – sin θ) = cos θ


Find the value of sin2θ  + cos2θ

Solution:

In Δ ABC, ∠ABC = 90°, ∠C = θ°

AB2 + BC2 = `square`   .....(Pythagoras theorem)

Divide both sides by AC2

`"AB"^2/"AC"^2 + "BC"^2/"AC"^2 = "AC"^2/"AC"^2`

∴ `("AB"^2/"AC"^2) + ("BC"^2/"AC"^2) = 1`

But `"AB"/"AC" = square and "BC"/"AC" = square`

∴ `sin^2 theta  + cos^2 theta = square` 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×