Advertisements
Advertisements
प्रश्न
Prove that (sin θ + cosec θ)2 + (cos θ + sec θ)2 = 7 + tan2 θ + cot2 θ.
उत्तर १
L.H.S = (sin θ + cosec θ)2 + (cos θ + sec θ)2
= (sin2θ + cosec2θ + 2 sin θ cosec θ + cos2θ + sec2θ + 2cos θ sec θ)
= (sin2θ + cos2θ) + (cosec2θ + sec2θ) + 2 sin θ `(1/("sin"theta)) + 2 cos theta (1/("cos" theta))`
= (1) + (1 + cot2θ + 1 + tan2θ) + (2) + (2)
= 7 + tan2θ + cot2θ
= R.H.S
उत्तर २
L.H.S = (sin θ + cosec θ)2 + (cos θ + sec θ)2
= (sin2θ + cosec2θ + 2 sin θ cosec θ + cos2θ + sec2θ + 2cos θ sec θ)
= (sin2θ + cos2θ ) + 1 + cot2θ + 2 sin θ x `1/sin θ` + 1 + tan2 θ + 2cos θ. `1/cos θ`
= 1 + 1 + 1 + 2 + 2 + tan2 θ + cot2θ
= 7 + tan2 θ + cot2θ
= RHS
Hence proved.
संबंधित प्रश्न
Prove the following identities:
`(i) (sinθ + cosecθ)^2 + (cosθ + secθ)^2 = 7 + tan^2 θ + cot^2 θ`
`(ii) (sinθ + secθ)^2 + (cosθ + cosecθ)^2 = (1 + secθ cosecθ)^2`
`(iii) sec^4 θ– sec^2 θ = tan^4 θ + tan^2 θ`
If secθ + tanθ = p, show that `(p^{2}-1)/(p^{2}+1)=\sin \theta`
Prove that `(sin theta)/(1-cottheta) + (cos theta)/(1 - tan theta) = cos theta + sin theta`
Prove the following trigonometric identities.
`1/(sec A + tan A) - 1/cos A = 1/cos A - 1/(sec A - tan A)`
Prove the following identities:
`tan A - cot A = (1 - 2cos^2A)/(sin A cos A)`
Prove the following identities:
`1 - cos^2A/(1 + sinA) = sinA`
`1/((1+ sintheta ))+1/((1- sin theta ))= 2 sec^2 theta`
`(sec theta -1 )/( sec theta +1) = ( sin ^2 theta)/( (1+ cos theta )^2)`
Write the value of `(1+ tan^2 theta ) ( 1+ sin theta ) ( 1- sin theta)`
If `cos theta = 7/25 , "write the value of" ( tan theta + cot theta).`
If `secθ = 25/7 ` then find tanθ.
Write the value of sin A cos (90° − A) + cos A sin (90° − A).
If sec2 θ (1 + sin θ) (1 − sin θ) = k, then find the value of k.
cos4 A − sin4 A is equal to ______.
2 (sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) is equal to
Prove the following identity :
`(1 + tan^2A) + (1 + 1/tan^2A) = 1/(sin^2A - sin^4A)`
If x = r sinA cosB , y = r sinA sinB and z = r cosA , prove that `x^2 + y^2 + z^2 = r^2`
Prove that :(sinθ+cosecθ)2+(cosθ+ secθ)2 = 7 + tan2 θ+cot2 θ.
If sec θ = x + `1/(4"x"), x ≠ 0,` find (sec θ + tan θ)
Evaluate:
`(tan 65^circ)/(cot 25^circ)`
Prove that : `1 - (cos^2 θ)/(1 + sin θ) = sin θ`.
Prove that `sin^2 θ/ cos^2 θ + cos^2 θ/sin^2 θ = 1/(sin^2 θ. cos^2 θ) - 2`.
Prove that `(sin 70°)/(cos 20°) + (cosec 20°)/(sec 70°) - 2 cos 70° xx cosec 20°` = 0.
Prove the following identities:
`1/(sin θ + cos θ) + 1/(sin θ - cos θ) = (2sin θ)/(1 - 2 cos^2 θ)`.
Prove the following identities:
`(1 - tan^2 θ)/(cot^2 θ - 1) = tan^2 θ`.
Prove the following identities.
(sin θ + sec θ)2 + (cos θ + cosec θ)2 = 1 + (sec θ + cosec θ)2
Prove that `1/("cosec" theta - cot theta)` = cosec θ + cot θ
Given that sinθ + 2cosθ = 1, then prove that 2sinθ – cosθ = 2.
If sinθ – cosθ = 0, then the value of (sin4θ + cos4θ) is ______.
If sin θ + cos θ = p and sec θ + cosec θ = q, then prove that q(p2 – 1) = 2p.