मराठी
महाराष्ट्र राज्य शिक्षण मंडळएस.एस.सी (इंग्रजी माध्यम) इयत्ता १० वी

If `Secθ = 25/7 ` Then Find Tanθ. - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

If `secθ = 25/7 ` then find tanθ.

उत्तर

`1 + tan^2θ = sec^2θ`

`1 + tan^2θ =(25/7)^2`

`∴ tan^2θ =625/49- 1`

`∴ tan^2θ =(625-49)/49`

`∴ tan^2θ =576/49`

`∴ tanθ =24/7`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2018-2019 (March) Balbharati Model Question Paper Set 1

संबंधित प्रश्‍न

Prove the following trigonometric identities

`((1 + sin theta)^2 + (1 + sin theta)^2)/(2cos^2 theta) =  (1 + sin^2 theta)/(1 - sin^2 theta)`


Prove the following trigonometric identities.

`1 + cot^2 theta/(1 + cosec theta) = cosec theta`


Prove the following trigonometric identities.

`(tan^3 theta)/(1 + tan^2 theta) + (cot^3 theta)/(1 + cot^2 theta) = sec theta cosec theta - 2 sin theta cos theta`


Prove the following trigonometric identities.

if `T_n = sin^n theta + cos^n theta`, prove that `(T_3 - T_5)/T_1 = (T_5 - T_7)/T_3`


If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z c tan θ, show that `x^2/a^2 + y^2/b^2 - x^2/c^2 = 1`


Prove the following identities:

`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`


Prove the following identities:

`(sintheta - 2sin^3theta)/(2cos^3theta - costheta) = tantheta`


`sin^2 theta + 1/((1+tan^2 theta))=1`


`cos^2 theta + 1/((1+ cot^2 theta )) =1`

     


`sin^2 theta + cos^4 theta = cos^2 theta + sin^4 theta`


Write the value of ` cosec^2 (90°- theta ) - tan^2 theta`

 


Prove that:

Sin4θ - cos4θ = 1 - 2cos2θ


Prove the following identity : 

`(secθ - tanθ)^2 = (1 - sinθ)/(1 + sinθ)`


Prove the following identity : 

`[1/((sec^2θ - cos^2θ)) + 1/((cosec^2θ - sin^2θ))](sin^2θcos^2θ) = (1 - sin^2θcos^2θ)/(2 + sin^2θcos^2θ)`


A moving boat is observed from the top of a 150 m high cliff moving away from the cliff. The angle of depression of the boat changes from 60° to 45° in 2 minutes. Find the speed of the boat in m/min.


There are two poles, one each on either bank of a river just opposite to each other. One pole is 60 m high. From the top of this pole, the angle of depression of the top and foot of the other pole are 30° and 60° respectively. Find the width of the river and height of the other pole.


If x = h + a cos θ, y = k + b sin θ. 
Prove that `((x - h)/a)^2 + ((y - k)/b)^2 = 1`.


Prove the following identities: sec2 θ + cosec2 θ = sec2 θ cosec2 θ.


Prove that `(1 + sintheta)/(1 - sin theta)` = (sec θ + tan θ)2 


If cot θ = `40/9`, find the values of cosec θ and sinθ,

We have, 1 + cot2θ = cosec2θ

1 + `square` = cosec2θ

1 + `square` = cosec2θ

`(square + square)/square` = cosec2θ

`square/square` = cosec2θ  ......[Taking root on the both side]

cosec θ = `41/9`

and sin θ = `1/("cosec"  θ)`

sin θ = `1/square`

∴ sin θ =  `9/41`

The value is cosec θ = `41/9`, and sin θ = `9/41`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×