मराठी

Prove the Following Trigonometric Identities. 1 + Cot 2 Theta/(1 + Cosec Theta) = Cosec Theta - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following trigonometric identities.

`1 + cot^2 theta/(1 + cosec theta) = cosec theta`

उत्तर

In the given question, we need to prove `1 + cot^2 theta/(1 + cosec theta) = cosec theta`

Using `cot theta = cos theta/sin theta` and `cosec theta = 1/sin theta` We get

`1 + cot^2 theta/(1 +  cosec theta) = (1 = cosec theta +  cot^2 theta)/(1 + cosec theta)`

`= ((1 + 1/sin theta + cos^2 theta/sin^2 theta))/((1 + 1/sin theta))`

` = (((sin^2 theta + sin theta + cos^2 theta)/sin^2 theta))/(((sin theta + 1)/sin theta))`

Further, using the property `sin^2 theta + cos^2 theta = 1`

We get

`((sin^2 theta + sin theta + cos^2 theta)/sin^2 theta)/((sin theta + 1)/sin theta) = ((1 + sin theta)/sin^2 theta)/((sin theta + 1)/sin theta)`

`= (1 + sin theta/sin^2 theta)((sin theta)/(1 + sin theta))`

`= 1/sin theta`

`= cosec theta`

Hence proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 11 Trigonometric Identities
Exercise 11.1 | Q 51 | पृष्ठ ४५
आरडी शर्मा Mathematics [English] Class 10
पाठ 11 Trigonometric Identities
Exercise 11.1 | Q 51 | पृष्ठ ४५

संबंधित प्रश्‍न

Prove the following trigonometric identities.

(1 + tan2θ) (1 − sinθ) (1 + sinθ) = 1


Prove the following trigonometric identities.

sec6θ = tan6θ + 3 tan2θ sec2θ + 1


Prove the following trigonometric identities.

`(1 - tan^2 A)/(cot^2 A -1) = tan^2 A`


Prove the following trigonometric identities.

`(tan^3 theta)/(1 + tan^2 theta) + (cot^3 theta)/(1 + cot^2 theta) = sec theta cosec theta - 2 sin theta cos theta`


Prove the following trigonometric identities.

`sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A + 1) = 1`


Prove the following identities:

`((1 + tan^2A)cotA)/(cosec^2A) = tan A`


Prove the following identities:

cosec4 A (1 – cos4 A) – 2 cot2 A = 1


If tan A = n tan B and sin A = m sin B, prove that:

`cos^2A = (m^2 - 1)/(n^2 - 1)`


`1/((1+ sintheta ))+1/((1- sin theta ))= 2 sec^2 theta`


`tan theta/(1+ tan^2 theta)^2 + cottheta/(1+ cot^2 theta)^2 = sin theta cos theta`


Prove the following identity :

`cosec^4A - cosec^2A = cot^4A + cot^2A`


Prove the following identity : 

`sinA/(1 + cosA) + (1 + cosA)/sinA = 2cosecA`


Find A if tan 2A = cot (A-24°).


Prove the following identities.

(sin θ + sec θ)2 + (cos θ + cosec θ)2 = 1 + (sec θ + cosec θ)2


Prove that `"cosec"  θ xx sqrt(1 - cos^2theta)` = 1


Prove that

`(cot "A" + "cosec  A" - 1)/(cot"A" - "cosec  A" + 1) = (1 + cos "A")/"sin A"`


If cos A = `(2sqrt("m"))/("m" + 1)`, then prove that cosec A = `("m" + 1)/("m" - 1)`


If 2sin2β − cos2β = 2, then β is ______.


If sinθ – cosθ = 0, then the value of (sin4θ + cos4θ) is ______.


Eliminate θ if x = r cosθ and y = r sinθ.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×