English

Prove the Following Trigonometric Identities. 1 + Cot 2 Theta/(1 + Cosec Theta) = Cosec Theta - Mathematics

Advertisements
Advertisements

Question

Prove the following trigonometric identities.

`1 + cot^2 theta/(1 + cosec theta) = cosec theta`

Solution

In the given question, we need to prove `1 + cot^2 theta/(1 + cosec theta) = cosec theta`

Using `cot theta = cos theta/sin theta` and `cosec theta = 1/sin theta` We get

`1 + cot^2 theta/(1 +  cosec theta) = (1 = cosec theta +  cot^2 theta)/(1 + cosec theta)`

`= ((1 + 1/sin theta + cos^2 theta/sin^2 theta))/((1 + 1/sin theta))`

` = (((sin^2 theta + sin theta + cos^2 theta)/sin^2 theta))/(((sin theta + 1)/sin theta))`

Further, using the property `sin^2 theta + cos^2 theta = 1`

We get

`((sin^2 theta + sin theta + cos^2 theta)/sin^2 theta)/((sin theta + 1)/sin theta) = ((1 + sin theta)/sin^2 theta)/((sin theta + 1)/sin theta)`

`= (1 + sin theta/sin^2 theta)((sin theta)/(1 + sin theta))`

`= 1/sin theta`

`= cosec theta`

Hence proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric Identities - Exercise 11.1 [Page 45]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.1 | Q 51 | Page 45
RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.1 | Q 51 | Page 45

RELATED QUESTIONS

`Prove the following trigonometric identities.

`(sec A - tan A)^2 = (1 - sin A)/(1 +  sin A)`


Prove the following trigonometric identities.

`cos A/(1 - tan A) + sin A/(1 - cot A)  = sin A + cos A`


Prove the following trigonometric identities.

if cos A + cos2 A = 1, prove that sin2 A + sin4 A = 1


Prove the following identities:

`1/(1 - sinA) + 1/(1 + sinA) = 2sec^2A`


If x = r sin A cos B, y = r sin A sin B and z = r cos A, then prove that : x2 + y2 + z2 = r2


` tan^2 theta - 1/( cos^2 theta )=-1`


`(tan A + tanB )/(cot A + cot B) = tan A tan B`


Write the value of `(1 - cos^2 theta ) cosec^2 theta`.


If `cosec  theta = 2x and cot theta = 2/x ," find the value of"  2 ( x^2 - 1/ (x^2))`


If `sec theta + tan theta = x,"  find the value of " sec theta`


Prove the following identity : 

`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`


Prove the following identity  :

`(1 + cotA)^2 + (1 - cotA)^2 = 2cosec^2A`


Prove the following identity : 

`(cosecθ)/(tanθ + cotθ) = cosθ`


Without using trigonometric table , evaluate : 

`(sin49^circ/sin41^circ)^2 + (cos41^circ/sin49^circ)^2`


Prove that sec2 (90° - θ) + tan2 (90° - θ) = 1 + 2 cot2 θ.


If tan α = n tan β, sin α = m sin β, prove that cos2 α  = `(m^2 - 1)/(n^2 - 1)`.


Prove that `cos θ/sin(90° - θ) + sin θ/cos (90° - θ) = 2`.


If a cos θ – b sin θ = c, then prove that (a sin θ + b cos θ) = `±  sqrt("a"^2 + "b"^2 -"c"^2)`


Choose the correct alternative:

tan (90 – θ) = ?


Prove the following:

(sin α + cos α)(tan α + cot α) = sec α + cosec α


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×