Advertisements
Advertisements
Question
Prove the following trigonometric identities.
`1 + cot^2 theta/(1 + cosec theta) = cosec theta`
Solution
In the given question, we need to prove `1 + cot^2 theta/(1 + cosec theta) = cosec theta`
Using `cot theta = cos theta/sin theta` and `cosec theta = 1/sin theta` We get
`1 + cot^2 theta/(1 + cosec theta) = (1 = cosec theta + cot^2 theta)/(1 + cosec theta)`
`= ((1 + 1/sin theta + cos^2 theta/sin^2 theta))/((1 + 1/sin theta))`
` = (((sin^2 theta + sin theta + cos^2 theta)/sin^2 theta))/(((sin theta + 1)/sin theta))`
Further, using the property `sin^2 theta + cos^2 theta = 1`
We get
`((sin^2 theta + sin theta + cos^2 theta)/sin^2 theta)/((sin theta + 1)/sin theta) = ((1 + sin theta)/sin^2 theta)/((sin theta + 1)/sin theta)`
`= (1 + sin theta/sin^2 theta)((sin theta)/(1 + sin theta))`
`= 1/sin theta`
`= cosec theta`
Hence proved.
APPEARS IN
RELATED QUESTIONS
`Prove the following trigonometric identities.
`(sec A - tan A)^2 = (1 - sin A)/(1 + sin A)`
Prove the following trigonometric identities.
`cos A/(1 - tan A) + sin A/(1 - cot A) = sin A + cos A`
Prove the following trigonometric identities.
if cos A + cos2 A = 1, prove that sin2 A + sin4 A = 1
Prove the following identities:
`1/(1 - sinA) + 1/(1 + sinA) = 2sec^2A`
If x = r sin A cos B, y = r sin A sin B and z = r cos A, then prove that : x2 + y2 + z2 = r2
` tan^2 theta - 1/( cos^2 theta )=-1`
`(tan A + tanB )/(cot A + cot B) = tan A tan B`
Write the value of `(1 - cos^2 theta ) cosec^2 theta`.
If `cosec theta = 2x and cot theta = 2/x ," find the value of" 2 ( x^2 - 1/ (x^2))`
If `sec theta + tan theta = x," find the value of " sec theta`
Prove the following identity :
`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`
Prove the following identity :
`(1 + cotA)^2 + (1 - cotA)^2 = 2cosec^2A`
Prove the following identity :
`(cosecθ)/(tanθ + cotθ) = cosθ`
Without using trigonometric table , evaluate :
`(sin49^circ/sin41^circ)^2 + (cos41^circ/sin49^circ)^2`
Prove that sec2 (90° - θ) + tan2 (90° - θ) = 1 + 2 cot2 θ.
If tan α = n tan β, sin α = m sin β, prove that cos2 α = `(m^2 - 1)/(n^2 - 1)`.
Prove that `cos θ/sin(90° - θ) + sin θ/cos (90° - θ) = 2`.
If a cos θ – b sin θ = c, then prove that (a sin θ + b cos θ) = `± sqrt("a"^2 + "b"^2 -"c"^2)`
Choose the correct alternative:
tan (90 – θ) = ?
Prove the following:
(sin α + cos α)(tan α + cot α) = sec α + cosec α