English

` Tan^2 Theta - 1/( Cos^2 Theta )=-1` - Mathematics

Advertisements
Advertisements

Question

` tan^2 theta - 1/( cos^2 theta )=-1`

Solution

LHS= `tan^2 theta - 1/(cos^2 theta)`

    =` (sin^2 theta )/( cos^2 theta) - 1/(cos^2 theta)`

    =`(sin ^2 theta-1)/(cos^2 theta)`

   =` (-cos^2 theta )/(cos^2 theta)`

   =  -1

  = RHS

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Trigonometric Identities - Exercises 1

APPEARS IN

RS Aggarwal Mathematics [English] Class 10
Chapter 8 Trigonometric Identities
Exercises 1 | Q 5.2

RELATED QUESTIONS

Prove the following identities:

`(i) (sinθ + cosecθ)^2 + (cosθ + secθ)^2 = 7 + tan^2 θ + cot^2 θ`

`(ii) (sinθ + secθ)^2 + (cosθ + cosecθ)^2 = (1 + secθ cosecθ)^2`

`(iii) sec^4 θ– sec^2 θ = tan^4 θ + tan^2 θ`


Prove the following trigonometric identities.

`1/(sec A + tan A) - 1/cos A = 1/cos A - 1/(sec A - tan A)`


Prove the following trigonometric identities.

`1 + cot^2 theta/(1 + cosec theta) = cosec theta`


If a cos θ + b sin θ = m and a sin θ – b cos θ = n, prove that a2 + b2 = m2 + n2


Prove the following identities:

`sinA/(1 - cosA) - cotA = cosecA`


Prove the following identities:

sec4 A (1 – sin4 A) – 2 tan2 A = 1


`tan theta/(1+ tan^2 theta)^2 + cottheta/(1+ cot^2 theta)^2 = sin theta cos theta`


`cot theta/((cosec  theta + 1) )+ ((cosec  theta +1 ))/ cot theta = 2 sec theta `


` (sin theta + cos theta )/(sin theta - cos theta ) + ( sin theta - cos theta )/( sin theta + cos theta) = 2/ ((1- 2 cos^2 theta))`


If \[sec\theta + tan\theta = x\] then \[tan\theta =\] 


The value of sin ( \[{45}^° + \theta) - \cos ( {45}^°- \theta)\] is equal to 


Prove the following identity : 

`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`


If tan θ = 2, where θ is an acute angle, find the value of cos θ. 


If x = r sin θ cos Φ, y = r sin θ sin Φ and z = r cos θ, prove that x2 + y2 + z2 = r2


tan θ cosec2 θ – tan θ is equal to


Prove that `[(1 + sin theta - cos theta)/(1 + sin theta + cos theta)]^2 = (1 - cos theta)/(1 + cos theta)`


If tan θ = `9/40`, complete the activity to find the value of sec θ.

Activity:

sec2θ = 1 + `square`     ......[Fundamental trigonometric identity]

sec2θ = 1 + `square^2`

sec2θ = 1 + `square` 

sec θ = `square` 


Prove that `(cos^2theta)/(sintheta) + sintheta` = cosec θ


If sin A = `1/2`, then the value of sec A is ______.


Which of the following is true for all values of θ (0° ≤ θ ≤ 90°)?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×