Advertisements
Advertisements
Question
` tan^2 theta - 1/( cos^2 theta )=-1`
Solution
LHS= `tan^2 theta - 1/(cos^2 theta)`
=` (sin^2 theta )/( cos^2 theta) - 1/(cos^2 theta)`
=`(sin ^2 theta-1)/(cos^2 theta)`
=` (-cos^2 theta )/(cos^2 theta)`
= -1
= RHS
APPEARS IN
RELATED QUESTIONS
Prove the following identities:
`(i) (sinθ + cosecθ)^2 + (cosθ + secθ)^2 = 7 + tan^2 θ + cot^2 θ`
`(ii) (sinθ + secθ)^2 + (cosθ + cosecθ)^2 = (1 + secθ cosecθ)^2`
`(iii) sec^4 θ– sec^2 θ = tan^4 θ + tan^2 θ`
Prove the following trigonometric identities.
`1/(sec A + tan A) - 1/cos A = 1/cos A - 1/(sec A - tan A)`
Prove the following trigonometric identities.
`1 + cot^2 theta/(1 + cosec theta) = cosec theta`
If a cos θ + b sin θ = m and a sin θ – b cos θ = n, prove that a2 + b2 = m2 + n2
Prove the following identities:
`sinA/(1 - cosA) - cotA = cosecA`
Prove the following identities:
sec4 A (1 – sin4 A) – 2 tan2 A = 1
`tan theta/(1+ tan^2 theta)^2 + cottheta/(1+ cot^2 theta)^2 = sin theta cos theta`
`cot theta/((cosec theta + 1) )+ ((cosec theta +1 ))/ cot theta = 2 sec theta `
` (sin theta + cos theta )/(sin theta - cos theta ) + ( sin theta - cos theta )/( sin theta + cos theta) = 2/ ((1- 2 cos^2 theta))`
If \[sec\theta + tan\theta = x\] then \[tan\theta =\]
The value of sin ( \[{45}^° + \theta) - \cos ( {45}^°- \theta)\] is equal to
Prove the following identity :
`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`
If tan θ = 2, where θ is an acute angle, find the value of cos θ.
If x = r sin θ cos Φ, y = r sin θ sin Φ and z = r cos θ, prove that x2 + y2 + z2 = r2.
tan θ cosec2 θ – tan θ is equal to
Prove that `[(1 + sin theta - cos theta)/(1 + sin theta + cos theta)]^2 = (1 - cos theta)/(1 + cos theta)`
If tan θ = `9/40`, complete the activity to find the value of sec θ.
Activity:
sec2θ = 1 + `square` ......[Fundamental trigonometric identity]
sec2θ = 1 + `square^2`
sec2θ = 1 + `square`
sec θ = `square`
Prove that `(cos^2theta)/(sintheta) + sintheta` = cosec θ
If sin A = `1/2`, then the value of sec A is ______.
Which of the following is true for all values of θ (0° ≤ θ ≤ 90°)?