Advertisements
Advertisements
Question
` (sin theta + cos theta )/(sin theta - cos theta ) + ( sin theta - cos theta )/( sin theta + cos theta) = 2/ ((1- 2 cos^2 theta))`
Solution
LHS = `(sin theta + cos theta )/(sin theta - cos theta ) + ( sin theta - cos theta )/( sin theta + cos theta)`
=` ((sin theta + cos theta )^2 + ( sin theta - cos theta)^2)/(( sin theta - cos theta ) ( sin theta + cos theta))`
=`( sin^2 theta + cos^2 theta + 2 sin theta cos theta + sin^2 theta + cos^2 theta - 2 sin theta cos theta)/((sin^2 theta - cos^2 theta))`
=`(1+1)/((- cos^ 2theta )- cos^2 theta) (∵ sin^ 2theta + cos^2 theta =1)`
=`2/(1-2 cos^2 theta)`
= RHS
APPEARS IN
RELATED QUESTIONS
Prove that:
sec2θ + cosec2θ = sec2θ x cosec2θ
Prove the following trigonometric identities.
`tan theta - cot theta = (2 sin^2 theta - 1)/(sin theta cos theta)`
If tan A = n tan B and sin A = m sin B, prove that:
`cos^2A = (m^2 - 1)/(n^2 - 1)`
If 2 sin A – 1 = 0, show that: sin 3A = 3 sin A – 4 sin3 A
`(1 + cot^2 theta ) sin^2 theta =1`
If x=a `cos^3 theta and y = b sin ^3 theta ," prove that " (x/a)^(2/3) + ( y/b)^(2/3) = 1.`
Write the value of`(tan^2 theta - sec^2 theta)/(cot^2 theta - cosec^2 theta)`
If ` cot A= 4/3 and (A+ B) = 90° ` ,what is the value of tan B?
Prove that:
`(sin^2θ)/(cosθ) + cosθ = secθ`
If sec θ + tan θ = x, write the value of sec θ − tan θ in terms of x.
If a cot θ + b cosec θ = p and b cot θ − a cosec θ = q, then p2 − q2
Prove the following identity :
`sin^4A + cos^4A = 1 - 2sin^2Acos^2A`
Without using trigonometric table , evaluate :
`(sin49^circ/sin41^circ)^2 + (cos41^circ/sin49^circ)^2`
prove that `1/(1 + cos(90^circ - A)) + 1/(1 - cos(90^circ - A)) = 2cosec^2(90^circ - A)`
Prove that (sin θ + cosec θ)2 + (cos θ + sec θ)2 = 7 + tan2 θ + cot2 θ.
Prove that `( 1 + sin θ)/(1 - sin θ) = 1 + 2 tan θ/cos θ + 2 tan^2 θ` .
Prove the following identities: cot θ - tan θ = `(2 cos^2 θ - 1)/(sin θ cos θ)`.
tan θ cosec2 θ – tan θ is equal to
Choose the correct alternative:
`(1 + cot^2"A")/(1 + tan^2"A")` = ?
If sin θ + cos θ = p and sec θ + cosec θ = q, then prove that q(p2 – 1) = 2p.