Advertisements
Advertisements
Question
Prove that:
sec2θ + cosec2θ = sec2θ x cosec2θ
Solution
L.H.S = sec2θ + cosec2θ
= 1 + tan2θ + 1 + cot2θ .....[∵ sec2θ = 1 + tan2θ and cosec2θ = 1 + cot2θ]
= 2 + tan2θ + cot2θ .....(i)
R.H.S = sec2θ x cosec2θ
= (1 + tan2θ) x (1 + cot2θ) .....[∵ sec2θ = 1 + tan2θ and cosec2θ = 1 + cot2θ]
= 1 + cot2θ + tan2θ + tan2θ x cot2θ
= 1 + cot2θ + tan2θ + tan2θ x (1/tan2θ) ...... [∵ cot2θ = 1/tan2θ]
= 2 + tan2θ + cot2θ .......(ii)
From (i) and (ii)
sec2θ + cosec2θ = sec2θ x cosec2θ
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
`tan theta/(1 - cot theta) + cot theta/(1 - tan theta) = 1 + tan theta + cot theta`
Prove the following trigonometric identities.
if `T_n = sin^n theta + cos^n theta`, prove that `(T_3 - T_5)/T_1 = (T_5 - T_7)/T_3`
Prove the following trigonometric identities.
`(cot^2 A(sec A - 1))/(1 + sin A) = sec^2 A ((1 - sin A)/(1 + sec A))`
Prove the following trigonometric identities
If x = a sec θ + b tan θ and y = a tan θ + b sec θ, prove that x2 − y2 = a2 − b2
Prove the following identities:
`cotA/(1 - tanA) + tanA/(1 - cotA) = 1 + tanA + cotA`
`sin^2 theta + 1/((1+tan^2 theta))=1`
`costheta/((1-tan theta))+sin^2theta/((cos theta-sintheta))=(cos theta+ sin theta)`
`sqrt((1-cos theta)/(1+cos theta)) = (cosec theta - cot theta)`
`sin theta/((cot theta + cosec theta)) - sin theta /( (cot theta - cosec theta)) =2`
` (sin theta - cos theta) / ( sin theta + cos theta ) + ( sin theta + cos theta ) / ( sin theta - cos theta ) = 2/ ((2 sin^2 theta -1))`
`(cot^2 theta ( sec theta - 1))/((1+ sin theta))+ (sec^2 theta(sin theta-1))/((1+ sec theta))=0`
If cosec θ = 2x and \[5\left( x^2 - \frac{1}{x^2} \right)\] \[2\left( x^2 - \frac{1}{x^2} \right)\]
If a cos θ − b sin θ = c, then a sin θ + b cos θ =
Prove the following identity :
`sin^2Acos^2B - cos^2Asin^2B = sin^2A - sin^2B`
Without using trigonometric identity , show that :
`sec70^circ sin20^circ - cos20^circ cosec70^circ = 0`
Prove that sin2 θ + cos4 θ = cos2 θ + sin4 θ.
Prove that `sqrt((1 + sin θ)/(1 - sin θ))` = sec θ + tan θ.
Prove that `1/("cosec" theta - cot theta)` = cosec θ + cot θ
If 2sin2θ – cos2θ = 2, then find the value of θ.
If 2 cos θ + sin θ = `1(θ ≠ π/2)`, then 7 cos θ + 6 sin θ is equal to ______.