English

Prove that: sec^2θ + cosec^2θ = sec^2θ x cosec^2θ - Geometry Mathematics 2

Advertisements
Advertisements

Question

Prove that:

sec2θ + cosec2θ = sec2θ x cosec2θ

Sum

Solution

L.H.S = sec2θ + cosec2θ

= 1 + tan2θ + 1 + cot2θ       .....[∵ sec2θ = 1 + tan2θ and cosec2θ = 1 + cot2θ]

= 2 + tan2θ + cot2θ              .....(i)

R.H.S = sec2θ x cosec2θ

= (1 + tan2θ) x (1 + cot2θ)   .....[∵ sec2θ = 1 + tan2θ and cosec2θ = 1 + cot2θ]

= 1 + cot2θ + tan2θ + tan2θ x cot2θ

= 1 + cot2θ + tan2θ + tan2θ x (1/tan2θ)        ...... [∵ cot2θ = 1/tan2θ]

 = 2 + tan2θ + cot2θ                    .......(ii)

From (i) and (ii)

sec2θ + cosec2θ = sec2θ x cosec2θ

shaalaa.com
  Is there an error in this question or solution?
2013-2014 (March)

RELATED QUESTIONS

Prove the following trigonometric identities.

`tan theta/(1 - cot theta) + cot theta/(1 - tan theta) = 1 + tan theta + cot theta`


Prove the following trigonometric identities.

if `T_n = sin^n theta + cos^n theta`, prove that `(T_3 - T_5)/T_1 = (T_5 - T_7)/T_3`


Prove the following trigonometric identities.

`(cot^2 A(sec A - 1))/(1 + sin A) = sec^2 A ((1 - sin A)/(1 + sec A))`


Prove the following trigonometric identities

If x = a sec θ + b tan θ and y = a tan θ + b sec θ, prove that x2 − y2 = a2 − b2


Prove the following identities:

`cotA/(1 - tanA) + tanA/(1 - cotA) = 1 + tanA + cotA`


`sin^2 theta + 1/((1+tan^2 theta))=1`


`costheta/((1-tan theta))+sin^2theta/((cos theta-sintheta))=(cos theta+ sin theta)`


`sqrt((1-cos theta)/(1+cos theta)) = (cosec  theta - cot  theta)`


`sin theta/((cot theta + cosec  theta)) - sin theta /( (cot theta - cosec  theta)) =2`


` (sin theta - cos theta) / ( sin theta + cos theta ) + ( sin theta + cos theta ) / ( sin theta - cos theta ) = 2/ ((2 sin^2 theta -1))`


`(cot^2 theta ( sec theta - 1))/((1+ sin theta))+ (sec^2 theta(sin theta-1))/((1+ sec theta))=0`


If cosec θ = 2x and \[5\left( x^2 - \frac{1}{x^2} \right)\] \[2\left( x^2 - \frac{1}{x^2} \right)\] 


If a cos θ − b sin θ = c, then a sin θ + b cos θ =


Prove the following identity : 

`sin^2Acos^2B - cos^2Asin^2B = sin^2A - sin^2B`


Without using trigonometric identity , show that :

`sec70^circ sin20^circ - cos20^circ cosec70^circ = 0`


Prove that sin2 θ + cos4 θ = cos2 θ + sin4 θ.


Prove that `sqrt((1 + sin θ)/(1 - sin θ))` = sec θ + tan θ.


Prove that `1/("cosec"  theta - cot theta)` = cosec θ + cot θ


If 2sin2θ – cos2θ = 2, then find the value of θ.


If 2 cos θ + sin θ = `1(θ ≠ π/2)`, then 7 cos θ + 6 sin θ is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×