Advertisements
Advertisements
Question
Prove that `sqrt((1 + sin θ)/(1 - sin θ))` = sec θ + tan θ.
Solution
LHS = `sqrt((1 + sin θ)/(1 - sin θ) xx (1 + sin θ)/(1 + sin θ))`
= `sqrt((1 + sin θ)^2/(1 - sin^2θ))`
= `sqrt((1 + sin θ)^2/(cos^2θ)`
= `(1 + sin θ)/cos θ = 1/cos θ + sin θ/cos θ`
= sec θ + tan θ
= RHS
Hence proved.
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities
`(1 + tan^2 theta)/(1 + cot^2 theta) = ((1 - tan theta)/(1 - cot theta))^2 = tan^2 theta`
Prove the following trigonometric identities
tan2 A + cot2 A = sec2 A cosec2 A − 2
`sin theta/((cot theta + cosec theta)) - sin theta /( (cot theta - cosec theta)) =2`
Prove the following identity :
`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`
Prove that cot θ. tan (90° - θ) - sec (90° - θ). cosec θ + 1 = 0.
Prove that `(sin (90° - θ))/cos θ + (tan (90° - θ))/cot θ + (cosec (90° - θ))/sec θ = 3`.
If tan α = n tan β, sin α = m sin β, prove that cos2 α = `(m^2 - 1)/(n^2 - 1)`.
Choose the correct alternative:
cot θ . tan θ = ?
Choose the correct alternative:
tan (90 – θ) = ?
If 4 tanβ = 3, then `(4sinbeta-3cosbeta)/(4sinbeta+3cosbeta)=` ______.