Advertisements
Advertisements
Question
Prove that cot θ. tan (90° - θ) - sec (90° - θ). cosec θ + 1 = 0.
Solution
LHS = cot θ. tan (90° - θ) - sec (90° - θ). cosec θ + 1
= cot θ. cot θ - cosec θ. cosec θ + 1
= (cot2θ - cosec2θ) + 1
= - 1 + 1 = 0
= RHS
Hence proved.
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
`sqrt((1 - cos A)/(1 + cos A)) = cosec A - cot A`
Prove that `(sec theta - 1)/(sec theta + 1) = ((sin theta)/(1 + cos theta))^2`
Prove the following identities:
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (1 + cosA)/sinA`
Prove the following identities:
`1 - sin^2A/(1 + cosA) = cosA`
If 2 sin A – 1 = 0, show that: sin 3A = 3 sin A – 4 sin3 A
`1+(tan^2 theta)/((1+ sec theta))= sec theta`
`(cos^3 theta +sin^3 theta)/(cos theta + sin theta) + (cos ^3 theta - sin^3 theta)/(cos theta - sin theta) = 2`
Prove the following identities.
`(sin "A" - sin "B")/(cos "A" + cos "B") + (cos "A" - cos "B")/(sin "A" + sin "B")`
Prove that sin6A + cos6A = 1 – 3sin2A . cos2A
Prove that `(1 + tan^2 A)/(1 + cot^2 A)` = sec2 A – 1