Advertisements
Advertisements
Question
If 2 sin A – 1 = 0, show that: sin 3A = 3 sin A – 4 sin3 A
Solution
2 sin A − 1 = 0
`=> sin A = 1/2`
We know `sin 30^circ = 1/2`
So, A = 30°
L.H.S. = sin 3 A = sin 90° = 1
R.H.S. = 3 sin A – 4 sin3 A
= 3 sin 30° – 4 sin3 30°
= `3(1/2) - 4(1/2)^3`
= `3/2 - 1/2`
= 1
L.H.S. = R.H.S.
APPEARS IN
RELATED QUESTIONS
9 sec2 A − 9 tan2 A = ______.
`(1+tan^2A)/(1+cot^2A)` = ______.
Prove the following identities:
`sqrt((1 + sinA)/(1 - sinA)) = sec A + tan A`
Show that : `sinAcosA - (sinAcos(90^circ - A)cosA)/sec(90^circ - A) - (cosAsin(90^circ - A)sinA)/(cosec(90^circ - A)) = 0`
`1+ (cot^2 theta)/((1+ cosec theta))= cosec theta`
Prove that:
Sin4θ - cos4θ = 1 - 2cos2θ
What is the value of (1 + tan2 θ) (1 − sin θ) (1 + sin θ)?
Prove that `(sin^2theta)/(cos theta) + cos theta` = sec θ
Prove that `sec"A"/(tan "A" + cot "A")` = sin A
If cos 9α = sinα and 9α < 90°, then the value of tan5α is ______.