Advertisements
Advertisements
Question
Prove that `(sin^2theta)/(cos theta) + cos theta` = sec θ
Solution
L.H.S = `(sin^2theta)/(cos theta) + cos theta`
= `(sin^2theta + cos^2theta)/costheta`
= `1/costheta` ......[∵ sin2θ + cos2θ = 1]
= sec θ
= R.H.S
∴ `(sin^2theta)/(cos theta) + cos theta` = sec θ
APPEARS IN
RELATED QUESTIONS
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(cosec θ – cot θ)^2 = (1-cos theta)/(1 + cos theta)`
Prove the identity (sin θ + cos θ)(tan θ + cot θ) = sec θ + cosec θ.
Prove the following trigonometric identities
`((1 + sin theta)^2 + (1 + sin theta)^2)/(2cos^2 theta) = (1 + sin^2 theta)/(1 - sin^2 theta)`
Prove the following trigonometric identities.
`(cos theta - sin theta + 1)/(cos theta + sin theta - 1) = cosec theta + cot theta`
Prove the following trigonometric identities.
`((1 + sin theta - cos theta)/(1 + sin theta + cos theta))^2 = (1 - cos theta)/(1 + cos theta)`
Prove the following identities:
sec2 A . cosec2 A = tan2 A + cot2 A + 2
If x = a cos θ and y = b cot θ, show that:
`a^2/x^2 - b^2/y^2 = 1`
Write the value of ` sin^2 theta cos^2 theta (1+ tan^2 theta ) (1+ cot^2 theta).`
Prove that:
Sin4θ - cos4θ = 1 - 2cos2θ
What is the value of \[6 \tan^2 \theta - \frac{6}{\cos^2 \theta}\]
If \[sec\theta + tan\theta = x\] then \[tan\theta =\]
If x = a sec θ and y = b tan θ, then b2x2 − a2y2 =
Prove the following Identities :
`(cosecA)/(cotA+tanA)=cosA`
Prove the following identity :
`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`
Prove the following identity :
`sqrt((secq - 1)/(secq + 1)) + sqrt((secq + 1)/(secq - 1))` = 2 cosesq
Prove that `tan^3 θ/( 1 + tan^2 θ) + cot^3 θ/(1 + cot^2 θ) = sec θ. cosec θ - 2 sin θ cos θ.`
If tan θ × A = sin θ, then A = ?
If cos (α + β) = 0, then sin (α – β) can be reduced to ______.
If `sqrt(3) tan θ` = 1, then find the value of sin2θ – cos2θ.
Show that tan4θ + tan2θ = sec4θ – sec2θ.