Advertisements
Advertisements
Question
Prove the following trigonometric identities.
`(cos theta - sin theta + 1)/(cos theta + sin theta - 1) = cosec theta + cot theta`
Solution
We have to prove the following identity
`(cos theta - sin theta + 1)/(cos theta + sin theta - 1) = cosec theta + cot theta`
Consider the LHS = `(cos theta - sin theta + 1)/(cos theta + sin theta - 1)`
`= (cos theta - sin theta + 1)/(cos theta + sin theta - 1) xx (cos theta + sin theta + 1)/(cos theta + sin theta + 1)`
`= ((cos theta + 1)^2 - (sin theta)^2)/((cos theta + sin theta)^2 - (1)^2)`
`= (cos^2 theta + 1 + 2 cos theta - sin^2 theta)/(cos^2 theta + sin^2 theta + 2 cos theta sin theta - 1)`
`= (cos^2 theta + 1 + 2 cos theta - (1 - cos^2 theta))/(1 + 2 cos theta sin theta - 1)`
`= (2 cos^2 theta + 2 cos theta)/(2 cos theta sin theta)`
`= (2 cos^2 theta + 2 cos theta)/(2 cos theta sin theta)`
`= (2 cos theta(cos theta + 1))/(2 cos theta sin theta)`
`= (cos theta + 1)/sin theta`
`= cos theta/sin theta + 1/sin theta`
`= cot theta + cosec theta`
= RHS
APPEARS IN
RELATED QUESTIONS
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(cosec θ – cot θ)^2 = (1-cos theta)/(1 + cos theta)`
Prove the following trigonometric identities.
sin2 A cot2 A + cos2 A tan2 A = 1
Prove the following trigonometric identities.
`(sec A - tan A)/(sec A + tan A) = (cos^2 A)/(1 + sin A)^2`
Prove the following trigonometric identity:
`sqrt((1 + sin A)/(1 - sin A)) = sec A + tan A`
`Prove the following trigonometric identities.
`(sec A - tan A)^2 = (1 - sin A)/(1 + sin A)`
Prove the following trigonometric identities. `(1 - cos A)/(1 + cos A) = (cot A - cosec A)^2`
Prove the following trigonometric identities.
`(cot A + tan B)/(cot B + tan A) = cot A tan B`
Prove the following identities:
`1/(1 + cosA) + 1/(1 - cosA) = 2cosec^2A`
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
`{1/((sec^2 theta- cos^2 theta))+ 1/((cosec^2 theta - sin^2 theta))} ( sin^2 theta cos^2 theta) = (1- sin^2 theta cos ^2 theta)/(2+ sin^2 theta cos^2 theta)`
Find the value of ` ( sin 50°)/(cos 40°)+ (cosec 40°)/(sec 50°) - 4 cos 50° cosec 40 °`
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then
Prove the following identity :
`tan^2A - sin^2A = tan^2A.sin^2A`
Prove the following identity :
`tan^2θ/(tan^2θ - 1) + (cosec^2θ)/(sec^2θ - cosec^2θ) = 1/(sin^2θ - cos^2θ)`
Prove that identity:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`
If a cos θ – b sin θ = c, then prove that (a sin θ + b cos θ) = `± sqrt("a"^2 + "b"^2 -"c"^2)`
Choose the correct alternative:
sec 60° = ?
If 1 – cos2θ = `1/4`, then θ = ?
Prove that (1 – cos2A) . sec2B + tan2B(1 – sin2A) = sin2A + tan2B
Proved that `(1 + secA)/secA = (sin^2A)/(1 - cos A)`.