Advertisements
Advertisements
Question
`{1/((sec^2 theta- cos^2 theta))+ 1/((cosec^2 theta - sin^2 theta))} ( sin^2 theta cos^2 theta) = (1- sin^2 theta cos ^2 theta)/(2+ sin^2 theta cos^2 theta)`
Solution
LHS = `{1/((sec^2 theta- cos^2 theta))+ 1/((cosec^2 theta - sin^2 theta))} ( sin^2 theta cos^2 theta) `
=`{(cos^2 theta)/(1- cos^4 theta)+ (sin^2 theta)/(1- sin^4 theta)}(sin^2 theta cos ^2 theta)`
=`{cos^2 theta/((1-cos^2 theta)(1+ cos^2 theta)) + sin^2 theta/((1-sin^2 theta)(2+ sin^2 theta ))}(sin^2 theta cos^2 theta)`
=`[cot^2 theta/(1+ cos^2 theta) + tan^2 theta/(1+ sin^2 theta)]sin^2 theta cos^2 theta`
=`(cos^4 theta)/(1+ cos^2 theta)+( sin^4 theta) / (1+ sin^2 theta)`
=`((cos^2 theta)^2)/(1+ cos^2 theta)+ ((sin^2 theta)^2)/(1+ sin^2 theta)`
=`((1-sin^2 theta )^2)/(1+ cos^2 theta)+((1-cos^2 theta )^2)/(1+ sin^2 theta)`
=`((1-sin^2 theta )^2 (1+sin^2 )+ (1- cos^2 theta)^2 (1+ cos^2 theta))/((1+ sin^2 theta )( 1+ cos^2 theta))`
=`(cos^4 theta (1+sin^2 theta )+ sin^4 theta (1+cos^2theta))/(1+ sin^2 theta + cos^2 theta + sin^2 theta cos ^2 theta )`
=`(cos^4 theta cos^4 theta sin^2 theta+ sin^4 theta + sin^4 theta cos ^2 theta )/(1+1 sin^2 theta cos^2 theta)`
=`(cos^4 theta + sin^4 theta + sin^2 theta cos^2 theta (sin^2 theta + cos^2 theta))/(2+ sin^2 theta cos^2 theta)`
=`((cos^2 theta)^2 + ( sin^2 theta )^2 + sin^2 theta cos^2 theta (1))/(2+ sin^2 theta cos^2 theta)`
=`((cos^2 theta + sin^2 theta )^2 -2 sin ^2 theta cos^2 theta + sin^2 theta cos^2 theta (1))/(2 + sin^2 theta cos^2 theta)`
=`(1^2+ cos^2 theta sin^2 theta -2 cos^2 theta sin^2 theta)/(2+ sin^2 theta cos^2 theta)`
=`(1-cos^2 theta sin^2 theta)/(2+ sin^2 theta cos^2 theta)`
=RHS
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
`sin theta/(1 - cos theta) = cosec theta + cot theta`
Prove the following trigonometric identities
`((1 + sin theta)^2 + (1 + sin theta)^2)/(2cos^2 theta) = (1 + sin^2 theta)/(1 - sin^2 theta)`
Prove the following trigonometric identities.
`((1 + tan^2 theta)cot theta)/(cosec^2 theta) = tan theta`
Prove the following trigonometric identities.
`(cot A - cos A)/(cot A + cos A) = (cosec A - 1)/(cosec A + 1)`
Prove the following trigonometric identities.
`(tan^2 A)/(1 + tan^2 A) + (cot^2 A)/(1 + cot^2 A) = 1`
Prove the following trigonometric identities.
`(cot^2 A(sec A - 1))/(1 + sin A) = sec^2 A ((1 - sin A)/(1 + sec A))`
`cos^2 theta + 1/((1+ cot^2 theta )) =1`
Write the value of`(tan^2 theta - sec^2 theta)/(cot^2 theta - cosec^2 theta)`
If `cos theta = 2/3 , "write the value of" ((sec theta -1))/((sec theta +1))`
If 5x = sec ` theta and 5/x = tan theta , " find the value of 5 "( x^2 - 1/( x^2))`
If x = a cos θ and y = b sin θ, then b2x2 + a2y2 =
Prove the following Identities :
`(cosecA)/(cotA+tanA)=cosA`
If `x/(a cosθ) = y/(b sinθ) "and" (ax)/cosθ - (by)/sinθ = a^2 - b^2 , "prove that" x^2/a^2 + y^2/b^2 = 1`
`(sin A)/(1 + cos A) + (1 + cos A)/(sin A)` = 2 cosec A
Prove that sin θ sin( 90° - θ) - cos θ cos( 90° - θ) = 0
Without using trigonometric table, prove that
`cos^2 26° + cos 64° sin 26° + (tan 36°)/(cot 54°) = 2`
Prove the following identities.
`(cot theta - cos theta)/(cot theta + cos theta) = ("cosec" theta - 1)/("cosec" theta + 1)`
Prove that `(tan^2 theta - 1)/(tan^2 theta + 1)` = 1 – 2 cos2θ
If 5 tan β = 4, then `(5 sin β - 2 cos β)/(5 sin β + 2 cos β)` = ______.