English

`{1/((Sec^2 Theta- Cos^2 Theta))+ 1/((Cosec^2 Theta - Sin^2 Theta))} ( Sin^2 Theta Cos^2 Theta) = (1- Sin^2 Theta Cos ^2 Theta)/(2+ Sin^2 Theta Cos^2 Theta)` - Mathematics

Advertisements
Advertisements

Question

`{1/((sec^2 theta- cos^2 theta))+ 1/((cosec^2 theta - sin^2 theta))} ( sin^2 theta cos^2 theta) = (1- sin^2 theta cos ^2 theta)/(2+ sin^2 theta cos^2 theta)`

Solution

LHS = `{1/((sec^2 theta- cos^2 theta))+ 1/((cosec^2 theta - sin^2 theta))} ( sin^2 theta cos^2 theta) `

       =`{(cos^2 theta)/(1- cos^4 theta)+ (sin^2 theta)/(1- sin^4 theta)}(sin^2 theta cos ^2 theta)`

      =`{cos^2 theta/((1-cos^2 theta)(1+ cos^2 theta)) + sin^2 theta/((1-sin^2 theta)(2+ sin^2 theta ))}(sin^2 theta cos^2 theta)`

     =`[cot^2 theta/(1+ cos^2 theta) + tan^2 theta/(1+ sin^2 theta)]sin^2 theta cos^2 theta`

    =`(cos^4 theta)/(1+ cos^2 theta)+( sin^4 theta) / (1+ sin^2 theta)`

    =`((cos^2 theta)^2)/(1+ cos^2 theta)+ ((sin^2 theta)^2)/(1+ sin^2 theta)`

    =`((1-sin^2 theta )^2)/(1+ cos^2 theta)+((1-cos^2 theta )^2)/(1+ sin^2 theta)`

   =`((1-sin^2 theta )^2 (1+sin^2 )+ (1- cos^2 theta)^2 (1+ cos^2 theta))/((1+ sin^2 theta )( 1+ cos^2 theta))`

  =`(cos^4 theta (1+sin^2 theta )+ sin^4 theta (1+cos^2theta))/(1+ sin^2 theta + cos^2 theta + sin^2 theta cos ^2 theta )`

  =`(cos^4 theta cos^4 theta sin^2 theta+ sin^4 theta + sin^4 theta cos ^2 theta )/(1+1 sin^2 theta cos^2 theta)`

  =`(cos^4 theta + sin^4 theta + sin^2 theta cos^2 theta (sin^2 theta + cos^2 theta))/(2+ sin^2 theta cos^2 theta)`

   =`((cos^2 theta)^2 + ( sin^2 theta )^2 + sin^2 theta cos^2 theta (1))/(2+ sin^2 theta cos^2 theta)`

   =`((cos^2 theta + sin^2 theta )^2 -2 sin ^2 theta cos^2 theta + sin^2 theta cos^2 theta (1))/(2 + sin^2 theta cos^2 theta)`

   =`(1^2+ cos^2 theta sin^2 theta -2 cos^2 theta sin^2 theta)/(2+ sin^2 theta cos^2 theta)`

    =`(1-cos^2 theta sin^2 theta)/(2+ sin^2 theta cos^2 theta)`

    =RHS

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Trigonometric Identities - Exercises 1

APPEARS IN

RS Aggarwal Mathematics [English] Class 10
Chapter 8 Trigonometric Identities
Exercises 1 | Q 33

RELATED QUESTIONS

Prove the following trigonometric identities.

`sin theta/(1 - cos theta) =  cosec theta + cot theta`


Prove the following trigonometric identities

`((1 + sin theta)^2 + (1 + sin theta)^2)/(2cos^2 theta) =  (1 + sin^2 theta)/(1 - sin^2 theta)`


Prove the following trigonometric identities.

`((1 + tan^2 theta)cot theta)/(cosec^2 theta)   = tan theta`


Prove the following trigonometric identities.

`(cot A - cos A)/(cot A + cos A) = (cosec A - 1)/(cosec A + 1)`


Prove the following trigonometric identities.

`(tan^2 A)/(1 + tan^2 A) + (cot^2 A)/(1 + cot^2 A) = 1`


Prove the following trigonometric identities.

`(cot^2 A(sec A - 1))/(1 + sin A) = sec^2 A ((1 - sin A)/(1 + sec A))`


`cos^2 theta + 1/((1+ cot^2 theta )) =1`

     


Write the value of`(tan^2 theta  - sec^2 theta)/(cot^2 theta - cosec^2 theta)`


If `cos theta = 2/3 , "write the value of" ((sec theta -1))/((sec theta +1))`


If 5x = sec ` theta and 5/x = tan theta , " find the value of 5 "( x^2 - 1/( x^2))`


If x = a cos θ and y = b sin θ, then b2x2 + a2y2 =


Prove the following Identities :

`(cosecA)/(cotA+tanA)=cosA`


If `x/(a cosθ) = y/(b sinθ)   "and"  (ax)/cosθ - (by)/sinθ = a^2 - b^2 , "prove that"  x^2/a^2 + y^2/b^2 = 1`


`(sin A)/(1 + cos A) + (1 + cos A)/(sin A)` = 2 cosec A


Prove that sin θ sin( 90° - θ) - cos θ cos( 90° - θ) = 0


Without using trigonometric table, prove that
`cos^2 26° + cos 64° sin 26° + (tan 36°)/(cot 54°) = 2`


Prove the following identities.

`(cot theta - cos theta)/(cot theta + cos theta) = ("cosec"  theta - 1)/("cosec"  theta + 1)`


Prove that `(tan^2 theta - 1)/(tan^2 theta + 1)` = 1 – 2 cos2θ


If 5 tan β = 4, then `(5  sin β - 2 cos β)/(5 sin β + 2 cos β)` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×