English

Prove the Following Trigonometric Identities. (Cot a - Cos A)/(Cot a + Cos A) = (Cosec a - 1)/(Cosec a + 1) - Mathematics

Advertisements
Advertisements

Question

Prove the following trigonometric identities.

`(cot A - cos A)/(cot A + cos A) = (cosec A - 1)/(cosec A + 1)`

Solution

In the given question, we need to prove `(cot A - cos A)/(cot A + cos A) = (cosec A - 1)/(cosec A + 1)`

Here, we will first solve the LHS.

Now using `cot theta = (cos theta)/(sin theta)`, we get

`(cot A - cos A)/(cot A + cos A) = (cos A/sin A - cos A)/(cos A/sin A + cos A)`

`= ((cos A - cos Asin A)/sin A)/((cos A + cos A sin A)/sin A)`

On further solving by taking the reciprocal of the denominator, we get,

`((cos A - cos Asin A)/sin A)/((cos A + cos Asin A)/sin A) = ((cos A - cos AsinA)/sin A) (sin A/(cos A + cos A sin A))`

`= (cos A - cos AsinA)/(cos A + cos Asin A)`

Now, taking `cos A sin A` common from both the numerator and the denominator, we get

`(cos A - cos A sin A)/(cos A + cos Asin A) = (cos A sin A (1/sin A -1 ))/(cos A sin A (1/sin A + 1))`

`= ((1/sin A - 1))/((1/sin A + 1))`

`= (cosec A - 1)/(cosec A + 1)`      `("using"  1/sin theta = cosec theta)`

Hence proved

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric Identities - Exercise 11.1 [Page 45]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.1 | Q 46 | Page 45

RELATED QUESTIONS

If (secA + tanA)(secB + tanB)(secC + tanC) = (secA – tanA)(secB – tanB)(secC – tanC) prove that each of the side is equal to ±1. We have,


If `x/a=y/b = z/c` show that `x^3/a^3 + y^3/b^3 + z^3/c^3 = (3xyz)/(abc)`.


Prove the following identities:

cosecA – cosec2 A = cot4 A + cot2 A


Prove the following identities:

`(sinA - cosA + 1)/(sinA + cosA - 1) = cosA/(1 - sinA)`


Prove that

`cot^2A-cot^2B=(cos^2A-cos^2B)/(sin^2Asin^2B)=cosec^2A-cosec^2B`


Write the value of `cosec^2 theta (1+ cos theta ) (1- cos theta).`


If cosec2 θ (1 + cos θ) (1 − cos θ) = λ, then find the value of λ. 


Prove the following identity :

 ( 1 + cotθ - cosecθ) ( 1 + tanθ + secθ) 


Prove the following identity : 

`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`


Without using trigonometric table , evaluate : 

`cosec49°cos41° + (tan31°)/(cot59°)`


Without using trigonometric identity , show that :

`sec70^circ sin20^circ - cos20^circ cosec70^circ = 0`


Prove that :(sinθ+cosecθ)2+(cosθ+ secθ)2 = 7 + tan2 θ+cotθ.


If tan α = n tan β, sin α = m sin β, prove that cos2 α  = `(m^2 - 1)/(n^2 - 1)`.


Prove that `tan^3 θ/( 1 + tan^2 θ) + cot^3 θ/(1 + cot^2 θ) = sec θ. cosec θ - 2 sin θ cos θ.`


Prove that identity:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`


If `cos theta/(1 + sin theta) = 1/"a"`, then prove that `("a"^2 - 1)/("a"^2 + 1)` = sin θ


If x = a tan θ and y = b sec θ then


Choose the correct alternative:

1 + cot2θ = ? 


If sec θ + tan θ = `sqrt(3)`, complete the activity to find the value of sec θ – tan θ

Activity:

`square` = 1 + tan2θ    ......[Fundamental trigonometric identity]

`square` – tan2θ = 1

(sec θ + tan θ) . (sec θ – tan θ) = `square`

`sqrt(3)*(sectheta - tan theta)` = 1

(sec θ – tan θ) = `square`


(sec2 θ – 1) (cosec2 θ – 1) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×