Advertisements
Advertisements
Question
If `cos theta/(1 + sin theta) = 1/"a"`, then prove that `("a"^2 - 1)/("a"^2 + 1)` = sin θ
Solution
`1/"a" = cos theta/(1 + sin theta)`
Squaring on both sides,
`1/"a"^2 = (cos^2theta)/(1 + sin theta)^2= (1 - sin^2theta)/(1 + sin theta)^2`
`1/"a"^2 = ((1 + sin theta)(1 - sin theta))/(1 + sin theta)^2 = ((1 - sin theta))/((1 + sin theta))`
a2(1 − sin θ) = 1 + sin θ
⇒ a2 = `((1 + sin theta))/((1 - sin theta))`
L.H.S = `("a"^2 - 1)/("a"^2 + 1)`
= `((1 + sin theta))/((1 - sin theta)) - 1 ÷ ((1 + sin theta))/((1 - sin theta)) + 1`
= `((1 + sin theta) - (1 - sin theta))/((1 - sin theta)) ÷ ((1 + sin theta) + (1 - sin theta))/((1 - sin theta))`
= `(1 + sin theta - 1 + sin theta)/((1 - sin theta)) ÷ (1 + sin theta + 1 - sin theta)/((1 - sin theta))`
= `(2 sin theta)/(1 - sin theta) ÷ 2/(1 - sin theta)`
= `(2 sin theta)/(1 - sin theta) xx (1 - sin theta)/2`
= sin θ
∴ `("a"^2 - 1)/("a"^2 + 1)` = sin θ.
Hence it is proved.
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
`(cos A cosec A - sin A sec A)/(cos A + sin A) = cosec A - sec A`
Write the value of tan10° tan 20° tan 70° tan 80° .
If x = a sin θ and y = bcos θ , write the value of`(b^2 x^2 + a^2 y^2)`
If \[\sin \theta = \frac{1}{3}\] then find the value of 9tan2 θ + 9.
\[\frac{1 - \sin \theta}{\cos \theta}\] is equal to
Prove the following identity :
`(secθ - tanθ)^2 = (1 - sinθ)/(1 + sinθ)`
If 5 sec θ – 12 cosec θ = 0, then find values of sin θ, sec θ
Show that tan 7° × tan 23° × tan 60° × tan 67° × tan 83° = `sqrt(3)`
The value of tan A + sin A = M and tan A - sin A = N.
The value of `("M"^2 - "N"^2) /("MN")^0.5`
Prove that `sqrt(sec^2 theta + "cosec"^2 theta) = tan theta + cot theta`