English
Tamil Nadu Board of Secondary EducationSSLC (English Medium) Class 10

If cosθ1+sinθ=1a, then prove that a2-1a2+1 = sin θ - Mathematics

Advertisements
Advertisements

Question

If `cos theta/(1 + sin theta) = 1/"a"`, then prove that `("a"^2 - 1)/("a"^2 + 1)` = sin θ

Sum

Solution

`1/"a" = cos theta/(1 + sin theta)`

Squaring on both sides,

`1/"a"^2 = (cos^2theta)/(1 + sin theta)^2= (1 - sin^2theta)/(1 + sin theta)^2`

`1/"a"^2 = ((1 + sin theta)(1 - sin theta))/(1 + sin theta)^2 = ((1 - sin theta))/((1 + sin theta))`

a2(1 − sin θ) = 1 + sin θ

⇒ a2 = `((1 + sin theta))/((1 - sin theta))`

L.H.S = `("a"^2 - 1)/("a"^2 + 1)`

= `((1 + sin theta))/((1 - sin theta)) - 1 ÷ ((1 + sin theta))/((1 - sin theta)) + 1`

= `((1 + sin theta) - (1 - sin theta))/((1 - sin theta)) ÷ ((1 + sin theta) + (1 - sin theta))/((1 - sin theta))`

= `(1 + sin theta - 1 + sin theta)/((1 - sin theta)) ÷ (1 + sin  theta + 1 - sin theta)/((1 - sin theta))`

= `(2 sin theta)/(1 - sin theta) ÷  2/(1 - sin theta)`

= `(2 sin theta)/(1 - sin theta) xx (1 - sin theta)/2`

= sin θ

∴ `("a"^2 - 1)/("a"^2 + 1)` = sin θ.

Hence it is proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Trigonometry - Exercise 6.1 [Page 250]

APPEARS IN

Samacheer Kalvi Mathematics [English] Class 10 SSLC TN Board
Chapter 6 Trigonometry
Exercise 6.1 | Q 10 | Page 250
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×