Advertisements
Advertisements
Question
Show that tan 7° × tan 23° × tan 60° × tan 67° × tan 83° = `sqrt(3)`
Solution
L.H.S = tan 7° × tan 23° × tan 60° × tan 67° × tan 83°
= tan 7° × tan 23° × `sqrt(3)` × tan(90° – 23°) × tan(90° – 7°)
= `sqrt(3)` × [tan 7° × tan(90° – 7°)] × [tan 23° × tan(90° – 23°)]
= `sqrt(3) xx 1 xx 1` ......[∵ tan θ × tan(90° – θ) = 1]
= `sqrt(3)`
= R.H.S
∴ tan 7° × tan 23° × tan 60° × tan 67° × tan 83° = `sqrt(3)`
APPEARS IN
RELATED QUESTIONS
Prove that `(tan^2 theta)/(sec theta - 1)^2 = (1 + cos theta)/(1 - cos theta)`
Prove the following trigonometric identities.
(1 + tan2θ) (1 − sinθ) (1 + sinθ) = 1
Prove the following trigonometric identities.
`((1 + tan^2 theta)cot theta)/(cosec^2 theta) = tan theta`
Prove the following identities:
`1/(secA + tanA) = secA - tanA`
If sin A + cos A = p and sec A + cosec A = q, then prove that : q(p2 – 1) = 2p.
`(sec^2 theta -1)(cosec^2 theta - 1)=1`
`1+(tan^2 theta)/((1+ sec theta))= sec theta`
Prove the following identity :
sinθcotθ + sinθcosecθ = 1 + cosθ
Without using trigonometric table , evaluate :
`cos90^circ + sin30^circ tan45^circ cos^2 45^circ`
Find the value of sin 30° + cos 60°.
Choose the correct alternative:
1 + tan2 θ = ?
If sec θ = `25/7`, then find the value of tan θ.
Evaluate:
`(tan 65°)/(cot 25°)`
If sec θ = x + `1/(4"x"), x ≠ 0,` find (sec θ + tan θ)
Prove that `( 1 + sin θ)/(1 - sin θ) = 1 + 2 tan θ/cos θ + 2 tan^2 θ` .
If `(cos alpha)/(cos beta)` = m and `(cos alpha)/(sin beta)` = n, then prove that (m2 + n2) cos2 β = n2
Prove that `"cosec" θ xx sqrt(1 - cos^2theta)` = 1
Prove that cot2θ × sec2θ = cot2θ + 1
If cosec θ + cot θ = p, then prove that cos θ = `(p^2 - 1)/(p^2 + 1)`
Prove that `sqrt(sec^2 theta + "cosec"^2 theta) = tan theta + cot theta`