English

Prove the Following Trigonometric Identities. (1 + Tan2θ) (1 − Sinθ) (1 + Sinθ) = 1 - Mathematics

Advertisements
Advertisements

Question

Prove the following trigonometric identities.

(1 + tan2θ) (1 − sinθ) (1 + sinθ) = 1

Solution

We have to prove  `(1 + tan^2 theta)(1 - sin theta)(1 + sin theta) = 1`

We know that

`sin^2 theta + cos^2 theta = 1`

`sec^2 theta - tan^2 theta = 1`

So

`(1 + tan^2 theta)(1 - sin theta) = (1 + tan^2 theta){(1 - sin theta)(1 + sin theta)}`

` = (1 + tan^2 theta)(1 - sin^2 theta)`

`= sec^2 theta cos^2 theta`

` = 1/cos^2 theta cos^2 theta`

= 1

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric Identities - Exercise 11.1 [Page 44]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.1 | Q 21 | Page 44

RELATED QUESTIONS

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(cosec  θ  – cot θ)^2 = (1-cos theta)/(1 + cos theta)`


`Prove the following trigonometric identities.

`(sec A - tan A)^2 = (1 - sin A)/(1 +  sin A)`


Prove the following trigonometric identities.

(sec A − cosec A) (1 + tan A + cot A) = tan A sec A − cot A cosec A


if `cosec theta - sin theta = a^3`, `sec theta - cos theta = b^3` prove that `a^2 b^2 (a^2 + b^2) = 1`


Prove that:

`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`


`(tan theta)/((sec theta -1))+(tan theta)/((sec theta +1)) = 2 sec theta`


Prove the following identity :

`(sec^2θ - sin^2θ)/tan^2θ = cosec^2θ - cos^2θ`


Prove the following identity :

`(tanθ + sinθ)/(tanθ - sinθ) = (secθ + 1)/(secθ - 1)`


If sinA + cosA = m and secA + cosecA = n , prove that n(m2 - 1) = 2m


Without using trigonometric identity , show that :

`sin42^circ sec48^circ + cos42^circ cosec48^circ = 2`


If sec θ + tan θ = m, show that `(m^2 - 1)/(m^2 + 1) = sin theta`


Prove that : `1 - (cos^2 θ)/(1 + sin θ) = sin θ`.


Prove that `tan A/(1 + tan^2 A)^2 + cot A/(1 + cot^2 A)^2 = sin A.cos A`


Prove that: sin4 θ + cos4θ = 1 - 2sin2θ cos2 θ.


If `(cos alpha)/(cos beta)` = m and `(cos alpha)/(sin beta)` = n, then prove that (m2 + n2) cos2 β = n2


If sec θ = `25/7`, find the value of tan θ.

Solution:

1 + tan2 θ = sec2 θ

∴ 1 + tan2 θ = `(25/7)^square`

∴ tan2 θ = `625/49 - square`

= `(625 - 49)/49`

= `square/49`

∴ tan θ = `square/7` ........(by taking square roots)


Choose the correct alternative:

sec 60° = ?


If tan θ + sec θ = l, then prove that sec θ = `(l^2 + 1)/(2l)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×