Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
(1 + tan2θ) (1 − sinθ) (1 + sinθ) = 1
उत्तर
We have to prove `(1 + tan^2 theta)(1 - sin theta)(1 + sin theta) = 1`
We know that
`sin^2 theta + cos^2 theta = 1`
`sec^2 theta - tan^2 theta = 1`
So
`(1 + tan^2 theta)(1 - sin theta) = (1 + tan^2 theta){(1 - sin theta)(1 + sin theta)}`
` = (1 + tan^2 theta)(1 - sin^2 theta)`
`= sec^2 theta cos^2 theta`
` = 1/cos^2 theta cos^2 theta`
= 1
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(cosec θ – cot θ)^2 = (1-cos theta)/(1 + cos theta)`
If `x/a=y/b = z/c` show that `x^3/a^3 + y^3/b^3 + z^3/c^3 = (3xyz)/(abc)`.
Prove the following trigonometric identities.
`sin theta/(1 - cos theta) = cosec theta + cot theta`
Prove the following trigonometric identities.
`(1 + cos A)/sin A = sin A/(1 - cos A)`
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = cosec A - cot A`
Prove the following identities:
`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`
If x = r cos A cos B, y = r cos A sin B and z = r sin A, show that : x2 + y2 + z2 = r2
`tan theta/(1+ tan^2 theta)^2 + cottheta/(1+ cot^2 theta)^2 = sin theta cos theta`
`(1-tan^2 theta)/(cot^2-1) = tan^2 theta`
Write the value of`(tan^2 theta - sec^2 theta)/(cot^2 theta - cosec^2 theta)`
\[\frac{1 - \sin \theta}{\cos \theta}\] is equal to
Prove the following identity :
`(cosecθ)/(tanθ + cotθ) = cosθ`
If x = h + a cos θ, y = k + b sin θ.
Prove that `((x - h)/a)^2 + ((y - k)/b)^2 = 1`.
Prove that the following identities:
Sec A( 1 + sin A)( sec A - tan A) = 1.
Prove the following identities.
`costheta/(1 + sintheta)` = sec θ – tan θ
Prove that
sin2A . tan A + cos2A . cot A + 2 sin A . cos A = tan A + cot A
If a sinθ + b cosθ = c, then prove that a cosθ – b sinθ = `sqrt(a^2 + b^2 - c^2)`.
Prove that `(1 + sec theta - tan theta)/(1 + sec theta + tan theta) = (1 - sin theta)/cos theta`
Let x1, x2, x3 be the solutions of `tan^-1((2x + 1)/(x + 1)) + tan^-1((2x - 1)/(x - 1))` = 2tan–1(x + 1) where x1 < x2 < x3 then 2x1 + x2 + x32 is equal to ______.