Advertisements
Advertisements
प्रश्न
Prove that `(1 + sec theta - tan theta)/(1 + sec theta + tan theta) = (1 - sin theta)/cos theta`
उत्तर
L.H.S = `(1 + sec theta - tan theta)/(1 + sec theta + tan theta)`
= `(1 + 1//cos theta - sin theta//cos theta)/(1 + 1//cos theta + sin theta//cos theta)` ...`[∵ sec theta = 1/cos theta and tan theta = sin theta/cos theta]`
= `(cos theta + 1 - sin theta)/(cos theta + 1 + sin theta)`
= `((cos theta + 1) - sin theta)/((cos theta + 1) + sin theta)`
= `(2 cos^2 theta/2 - 2 sin theta/2 * cos theta/2)/(2 cos^2 theta/2 + 2 sin theta/2 * cos theta/2)` ...`[∵ 1 + cos theta = 2 cos^2 theta/2 and sin theta = 2sin theta/2 cos theta/2]`
= `(2cos^2 theta/2 - 2 sin theta/2 * cos theta/2)/(2cos^2 theta/2 + 2sin theta/2 * cos theta/2)`
= `(2cos theta/2 (cos theta/2 - sin theta/2))/(2cos theta/2(cos theta/2 + sin theta/2))`
= `(cos theta/2 - sin theta/2)/(cos theta/2 + sin theta/2) xx ((cos theta/2 - sin theta/2))/((cos theta/2 - sin theta/2))` ...[By rationalisation]
= `(cos theta/2 - sin theta/2)^2/((cos^2 theta/2 - sin^2 theta/2))` ...[∵ (a – b)2 = a2 + b2 – 2ab and (a – b)(a + b) = (a2 – b2)]
= `((cos^2 theta/2 + sin^2 theta/2) - (2 sin theta/2 * cos theta/2))/cos theta` ...`[∵ cos^2 theta/2 - sin^2 theta/2 = cos theta]`
= `(1 - sin theta)/cos theta` ...`[∵ sin^2 theta/2 + cos^2 theta/2 = 1]`
= R.H.S
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`cos theta/(1 + sin theta) = (1 - sin theta)/cos theta`
Prove the following trigonometric identities
sec4 A(1 − sin4 A) − 2 tan2 A = 1
Prove the following trigonometric identities.
`(1 + cot A + tan A)(sin A - cos A) = sec A/(cosec^2 A) - (cosec A)/sec^2 A = sin A tan A - cos A cot A`
Prove that `sqrt((1 + cos theta)/(1 - cos theta)) + sqrt((1 - cos theta)/(1 + cos theta)) = 2 cosec theta`
If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, show that `x^2/a^2 + y^2/b^2 - x^2/c^2 = 1`
Prove the following identities:
(cosec A – sin A) (sec A – cos A) (tan A + cot A) = 1
Prove that:
`1/(sinA - cosA) - 1/(sinA + cosA) = (2cosA)/(2sin^2A - 1)`
Prove that:
`cot^2A/(cosecA - 1) - 1 = cosecA`
Prove that:
`cosA/(1 + sinA) = secA - tanA`
`sin^2 theta + 1/((1+tan^2 theta))=1`
`(cot ^theta)/((cosec theta+1)) + ((cosec theta + 1))/cot theta = 2 sec theta`
Write the value of `(1 - cos^2 theta ) cosec^2 theta`.
If cosec2 θ (1 + cos θ) (1 − cos θ) = λ, then find the value of λ.
Prove the following identity :
`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`
If `(cos alpha)/(cos beta)` = m and `(cos alpha)/(sin beta)` = n, then prove that (m2 + n2) cos2 β = n2
If x sin3 θ + y cos3 θ = sin θ cos θ and x sin θ = y cos θ, then prove that x2 + y2 = 1
Choose the correct alternative:
tan (90 – θ) = ?
If tan θ × A = sin θ, then A = ?
Prove that `sintheta/(sectheta+ 1) +sintheta/(sectheta - 1)` = 2 cot θ
If 4 tanβ = 3, then `(4sinbeta-3cosbeta)/(4sinbeta+3cosbeta)=` ______.