Advertisements
Advertisements
प्रश्न
Prove the following identities:
(cosec A – sin A) (sec A – cos A) (tan A + cot A) = 1
उत्तर
L.H.S. = (cosec A – sin A) (sec A – cos A) (tan A + cot A)
= `(1/sinA - sinA)(1/cosA - cosA)(1/tanA + tanA)`
= `((1 - sin^2A)/sinA)((1 - cos^2A)/cosA)(sinA/cosA + cosA/sinA)`
= `(cos^2A/sinA)(sin^2A/cosA)((sin^2A + cos^2A)/(sinA.cosA))`
= `(cos^2A/sinA)(sin^2A/cosA)((1)/(sinA.cosA))`
= 1 = R.H.S.
APPEARS IN
संबंधित प्रश्न
If `x/a=y/b = z/c` show that `x^3/a^3 + y^3/b^3 + z^3/c^3 = (3xyz)/(abc)`.
Prove the following identities:
(cos A + sin A)2 + (cos A – sin A)2 = 2
If `sin theta = 1/2 , " write the value of" ( 3 cot^2 theta + 3).`
If cosec θ = 2x and \[5\left( x^2 - \frac{1}{x^2} \right)\] \[2\left( x^2 - \frac{1}{x^2} \right)\]
Prove that:
(cosec θ - sinθ )(secθ - cosθ ) ( tanθ +cot θ) =1
Prove the following identity :
`sinθ(1 + tanθ) + cosθ(1 +cotθ) = secθ + cosecθ`
Prove the following identity :
`sinA/(1 + cosA) + (1 + cosA)/sinA = 2cosecA`
Prove the following identity :
`tanA - cotA = (1 - 2cos^2A)/(sinAcosA)`
Prove the following identity :
`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`
If x sin3θ + y cos3 θ = sin θ cos θ and x sin θ = y cos θ , then show that x2 + y2 = 1.