Advertisements
Advertisements
प्रश्न
Prove the following identity :
`sinθ(1 + tanθ) + cosθ(1 +cotθ) = secθ + cosecθ`
उत्तर
`sinθ(1 + tanθ) + cosθ(1 +cotθ) = secθ + cosecθ`
LHS = `sinθ(1 + tanθ) + cosθ(1 + cotθ)`
= `sinθ (1 + sinθ/cosθ) + cosθ (1 + cosθ /sinθ)`
= `sinθ((cosθ + sinθ)/cosθ) + cosθ((sinθ + cosθ)/sinθ)`
= `cosθ + sinθ(sinθ /cosθ + cosθ /sinθ)`
= `cosθ + sinθ (1/sinθ 1/cosθ) = secθ + cosecθ `
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(sec A - tan A)/(sec A + tan A) = (cos^2 A)/(1 + sin A)^2`
Prove the following identities:
(1 – tan A)2 + (1 + tan A)2 = 2 sec2A
Prove that:
`1/(sinA - cosA) - 1/(sinA + cosA) = (2cosA)/(2sin^2A - 1)`
`sin theta/((cot theta + cosec theta)) - sin theta /( (cot theta - cosec theta)) =2`
What is the value of (1 − cos2 θ) cosec2 θ?
Prove the following identity :
`(1 - tanA)^2 + (1 + tanA)^2 = 2sec^2A`
Prove the following identity :
`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`
Prove that sin( 90° - θ ) sin θ cot θ = cos2θ.
Prove that `(tan^2 theta - 1)/(tan^2 theta + 1)` = 1 – 2 cos2θ
Prove that sec2θ − cos2θ = tan2θ + sin2θ