Advertisements
Advertisements
प्रश्न
Prove that:
`1/(sinA - cosA) - 1/(sinA + cosA) = (2cosA)/(2sin^2A - 1)`
उत्तर
`1/(sinA - cosA) - 1/(sinA + cosA)`
= `(sinA + cosA - sinA + cosA)/((sinA - cosA)(sinA + cosA)`
= `(2cosA)/(sin^2A - cos^2A)`
= `(2cosA)/(sin^2A - (1 - sin^2A))`
= `(2cosA)/(sin^2A - 1 + sin^2A)`
= `(2cosA)/(2sin^2A - 1)`
APPEARS IN
संबंधित प्रश्न
If sin A + cos A = m and sec A + cosec A = n, show that : n (m2 – 1) = 2 m
`costheta/((1-tan theta))+sin^2theta/((cos theta-sintheta))=(cos theta+ sin theta)`
Write the value of `(1 - cos^2 theta ) cosec^2 theta`.
If `cos B = 3/5 and (A + B) =- 90° ,`find the value of sin A.
Write the value of tan1° tan 2° ........ tan 89° .
If sinθ = `11/61`, find the values of cosθ using trigonometric identity.
\[\frac{\sin \theta}{1 + \cos \theta}\]is equal to
Prove that tan2Φ + cot2Φ + 2 = sec2Φ.cosec2Φ.
Prove that `cot^2 "A" [(sec "A" - 1)/(1 + sin "A")] + sec^2 "A" [(sin"A" - 1)/(1 + sec"A")]` = 0
Choose the correct alternative:
sec 60° = ?