Advertisements
Advertisements
प्रश्न
\[\frac{\sin \theta}{1 + \cos \theta}\]is equal to
विकल्प
\[\frac{\sin \theta}{1 + \cos \theta}\]
\[\frac{1 - \cos \theta}{\cos \theta}\]
\[\frac{1 - \cos \theta}{\cos \theta}\]
\[\frac{1 - \sin \theta}{\cos \theta}\]
उत्तर
The given expression is `sin θ/(1+cosθ)`
Multiplying both the numerator and denominator under the root by`(1-cosθ )` , we have
`sinθ/(1+cos θ)`
= `(sinθ (1-cos θ))/((1+cosθ)(1-cos θ))`
=`(sin θ(1-cos θ))/(1-cos^2 θ)`
= `(sin θ(1-cos θ))/sin^2 θ`
= `(1-cos θ)/sin θ`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(tan^3 theta)/(1 + tan^2 theta) + (cot^3 theta)/(1 + cot^2 theta) = sec theta cosec theta - 2 sin theta cos theta`
If cos θ + cos2 θ = 1, prove that sin12 θ + 3 sin10 θ + 3 sin8 θ + sin6 θ + 2 sin4 θ + 2 sin2 θ − 2 = 1
Prove the following identities:
`1/(1 - sinA) + 1/(1 + sinA) = 2sec^2A`
Prove the following identities:
`(1 - sinA)/(1 + sinA) = (secA - tanA)^2`
Prove the following identities:
`sqrt((1 + sinA)/(1 - sinA)) = sec A + tan A`
Show that : `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec A cosec A`
Prove that:
`cot^2A/(cosecA - 1) - 1 = cosecA`
Prove that
`cot^2A-cot^2B=(cos^2A-cos^2B)/(sin^2Asin^2B)=cosec^2A-cosec^2B`
If `( tan theta + sin theta ) = m and ( tan theta - sin theta ) = n " prove that "(m^2-n^2)^2 = 16 mn .`
If ` cot A= 4/3 and (A+ B) = 90° ` ,what is the value of tan B?
If `cos B = 3/5 and (A + B) =- 90° ,`find the value of sin A.
If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, then\[\frac{x^2}{a^2} + \frac{y^2}{b^2}\]
Prove that `sin(90^circ - A).cos(90^circ - A) = tanA/(1 + tan^2A)`
Prove that `(tan^2"A")/(tan^2 "A"-1) + (cosec^2"A")/(sec^2"A"-cosec^2"A") = (1)/(1-2 co^2 "A")`
Prove that:
`sqrt(( secθ - 1)/(secθ + 1)) + sqrt((secθ + 1)/(secθ - 1)) = 2cosecθ`
Without using the trigonometric table, prove that
tan 10° tan 15° tan 75° tan 80° = 1
Prove that `(sin 70°)/(cos 20°) + (cosec 20°)/(sec 70°) - 2 cos 70° xx cosec 20°` = 0.
If A + B = 90°, show that sec2 A + sec2 B = sec2 A. sec2 B.
If `sqrt(3)` sin θ – cos θ = θ, then show that tan 3θ = `(3tan theta - tan^3 theta)/(1 - 3 tan^2 theta)`
If 1 + sin2α = 3 sinα cosα, then values of cot α are ______.