हिंदी

Sin θ 1 + Cos θ is Equal to - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{\sin \theta}{1 + \cos \theta}\]is equal to 

विकल्प

  • \[\frac{\sin \theta}{1 + \cos \theta}\]

  • \[\frac{1 - \cos \theta}{\cos \theta}\]

  • \[\frac{1 - \cos \theta}{\cos \theta}\]

  • \[\frac{1 - \sin \theta}{\cos \theta}\]

MCQ

उत्तर

The given expression is `sin θ/(1+cosθ)`  

Multiplying both the numerator and denominator under the root by`(1-cosθ )` , we have 

`sinθ/(1+cos θ)`  

= `(sinθ (1-cos θ))/((1+cosθ)(1-cos θ))` 

=`(sin θ(1-cos θ))/(1-cos^2 θ)` 

= `(sin θ(1-cos θ))/sin^2 θ` 

= `(1-cos θ)/sin θ` 

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric Identities - Exercise 11.4 [पृष्ठ ५७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 11 Trigonometric Identities
Exercise 11.4 | Q 7 | पृष्ठ ५७

संबंधित प्रश्न

Prove the following trigonometric identities.

`(tan^3 theta)/(1 + tan^2 theta) + (cot^3 theta)/(1 + cot^2 theta) = sec theta cosec theta - 2 sin theta cos theta`


If cos θ + cos2 θ = 1, prove that sin12 θ + 3 sin10 θ + 3 sin8 θ + sin6 θ + 2 sin4 θ + 2 sin2 θ − 2 = 1


Prove the following identities:

`1/(1 - sinA) + 1/(1 + sinA) = 2sec^2A`


Prove the following identities:

`(1 - sinA)/(1 + sinA) = (secA - tanA)^2`


Prove the following identities:

`sqrt((1 + sinA)/(1 - sinA)) = sec A + tan A`


Show that : `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec A cosec A`


Prove that:

`cot^2A/(cosecA - 1) - 1 = cosecA`


Prove that

`cot^2A-cot^2B=(cos^2A-cos^2B)/(sin^2Asin^2B)=cosec^2A-cosec^2B`


If `( tan theta + sin theta ) = m and ( tan theta - sin theta ) = n " prove that "(m^2-n^2)^2 = 16 mn .`


If ` cot A= 4/3 and (A+ B) = 90°  `  ,what is the value of tan B?


If `cos B = 3/5 and (A + B) =- 90° ,`find the value of sin A.


If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, then\[\frac{x^2}{a^2} + \frac{y^2}{b^2}\]


Prove that  `sin(90^circ - A).cos(90^circ - A) = tanA/(1 + tan^2A)`


Prove that `(tan^2"A")/(tan^2 "A"-1) + (cosec^2"A")/(sec^2"A"-cosec^2"A") = (1)/(1-2 co^2 "A")`


Prove that:
`sqrt(( secθ - 1)/(secθ + 1)) + sqrt((secθ + 1)/(secθ - 1)) = 2cosecθ`


Without using the trigonometric table, prove that
tan 10° tan 15° tan 75° tan 80° = 1


Prove that `(sin 70°)/(cos 20°) + (cosec 20°)/(sec 70°) - 2 cos 70° xx cosec 20°` = 0.


If A + B = 90°, show that sec2 A + sec2 B = sec2 A. sec2 B.


If `sqrt(3)` sin θ – cos θ = θ, then show that tan 3θ = `(3tan theta - tan^3 theta)/(1 - 3 tan^2 theta)`


If 1 + sin2α = 3 sinα cosα, then values of cot α are ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×