English

Sin θ 1 + Cos θ is Equal to - Mathematics

Advertisements
Advertisements

Question

\[\frac{\sin \theta}{1 + \cos \theta}\]is equal to 

Options

  • \[\frac{\sin \theta}{1 + \cos \theta}\]

  • \[\frac{1 - \cos \theta}{\cos \theta}\]

  • \[\frac{1 - \cos \theta}{\cos \theta}\]

  • \[\frac{1 - \sin \theta}{\cos \theta}\]

MCQ

Solution

The given expression is `sin θ/(1+cosθ)`  

Multiplying both the numerator and denominator under the root by`(1-cosθ )` , we have 

`sinθ/(1+cos θ)`  

= `(sinθ (1-cos θ))/((1+cosθ)(1-cos θ))` 

=`(sin θ(1-cos θ))/(1-cos^2 θ)` 

= `(sin θ(1-cos θ))/sin^2 θ` 

= `(1-cos θ)/sin θ` 

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric Identities - Exercise 11.4 [Page 57]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.4 | Q 7 | Page 57

RELATED QUESTIONS

Prove the following trigonometric identities

`cos theta/(1 - sin theta) = (1 + sin theta)/cos theta`


Prove the following trigonometric identities

cosec6θ = cot6θ + 3 cot2θ cosec2θ + 1


Prove the following identities:

(cos A + sin A)2 + (cos A – sin A)2 = 2


Prove the following identities:

`(1 - sinA)/(1 + sinA) = (secA - tanA)^2`


Show that : tan 10° tan 15° tan 75° tan 80° = 1


`((sin A-  sin B ))/(( cos A + cos B ))+ (( cos A - cos B ))/(( sinA + sin B ))=0` 


Prove that `(sinθ - cosθ + 1)/(sinθ + cosθ - 1) = 1/(secθ - tanθ)`


What is the value of 9cot2 θ − 9cosec2 θ? 


sec4 A − sec2 A is equal to


2 (sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) is equal to 


Prove the following identity :

 ( 1 + cotθ - cosecθ) ( 1 + tanθ + secθ) 


Prove the following identity : 

`sqrt((1 + cosA)/(1 - cosA)) = cosecA + cotA`


Prove the following identity : 

`1/(cosA + sinA - 1) + 2/(cosA + sinA + 1) = cosecA + secA`


Find the value of `θ(0^circ < θ < 90^circ)` if : 

`tan35^circ cot(90^circ - θ) = 1`


Prove that: `(sec θ - tan θ)/(sec θ + tan θ ) = 1 - 2 sec θ.tan θ + 2 tan^2θ`


If tan α = n tan β, sin α = m sin β, prove that cos2 α  = `(m^2 - 1)/(n^2 - 1)`.


Prove the following identities: sec2 θ + cosec2 θ = sec2 θ cosec2 θ.


Prove the following identities.

`(1 - tan^2theta)/(cot^2 theta - 1)` = tan2 θ


If (sin α + cosec α)2 + (cos α + sec α)2 = k + tan2α + cot2α, then the value of k is equal to


`(cos^2 θ)/(sin^2 θ) - 1/(sin^2 θ)`, in simplified form, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×