Advertisements
Advertisements
Question
Prove the following identities:
`(1 - sinA)/(1 + sinA) = (secA - tanA)^2`
Solution
L.H.S. = `(1 - sinA)/(1 + sinA)`
= `(1 - sinA)/(1 + sinA) xx (1 - sinA)/(1 - sinA)`
= `(1 - sinA)^2/(1 - sin^2A`
= `(1 - sinA)^2/cos^2A`
= `((1 - sinA)/cosA)^2`
= `(1/cosA - sinA/cosA)^2`
= `(secA - tanA)^2`
= R.H.S.
APPEARS IN
RELATED QUESTIONS
Prove the following identities:
`(i) 2 (sin^6 θ + cos^6 θ) –3(sin^4 θ + cos^4 θ) + 1 = 0`
`(ii) (sin^8 θ – cos^8 θ) = (sin^2 θ – cos^2 θ) (1 – 2sin^2 θ cos^2 θ)`
If (secA + tanA)(secB + tanB)(secC + tanC) = (secA – tanA)(secB – tanB)(secC – tanC) prove that each of the side is equal to ±1. We have,
Prove the following trigonometric identity:
`sqrt((1 + sin A)/(1 - sin A)) = sec A + tan A`
Prove the following trigonometric identities.
`(1/(sec^2 theta - cos theta) + 1/(cosec^2 theta - sin^2 theta)) sin^2 theta cos^2 theta = (1 - sin^2 theta cos^2 theta)/(2 + sin^2 theta + cos^2 theta)`
Prove the following identities:
(sec A – cos A) (sec A + cos A) = sin2 A + tan2 A
Write the value of tan1° tan 2° ........ tan 89° .
If x = r sinA cosB , y = r sinA sinB and z = r cosA , prove that `x^2 + y^2 + z^2 = r^2`
Prove that `sqrt(2 + tan^2 θ + cot^2 θ) = tan θ + cot θ`.
The value of the expression [cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)] is ______.
If tan θ = `x/y`, then cos θ is equal to ______.