English

The value of the expression [cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)] is ______. - Mathematics

Advertisements
Advertisements

Question

The value of the expression [cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)] is ______.

Options

  • – 1

  • 0

  • 1

  • `3/2`

MCQ
Fill in the Blanks

Solution

The value of the expression [cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)] is 0.

Explanation:

According to the question,

We have to find the value of the equation,

cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)

= cosec[90° – (15° – θ)] – sec(15° – θ) – tan(55° + θ) + cot[90° – (55° + θ)]

Since, cosec(90° – θ) = sec θ

And cot(90° – θ) = tan θ

We get,

= sec(15° – θ) – sec(15° – θ) – tan(55° + θ) + tan(55° + θ)

= 0

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Introduction To Trigonometry and Its Applications - Exercise 8.1 [Page 90]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 10
Chapter 8 Introduction To Trigonometry and Its Applications
Exercise 8.1 | Q 3 | Page 90

RELATED QUESTIONS

If (secA + tanA)(secB + tanB)(secC + tanC) = (secA – tanA)(secB – tanB)(secC – tanC) prove that each of the side is equal to ±1. We have,


Prove the following trigonometric identities.

`1/(sec A + tan A) - 1/cos A = 1/cos A - 1/(sec A - tan A)`


Prove the following trigonometric identities.

`(1/(sec^2 theta - cos theta) + 1/(cosec^2 theta - sin^2 theta)) sin^2 theta cos^2 theta = (1 - sin^2 theta cos^2 theta)/(2 + sin^2 theta + cos^2 theta)`


Prove the following trigonometric identities.

(1 + cot A − cosec A) (1 + tan A + sec A) = 2


Prove the following trigonometric identities.

(cosec θ − sec θ) (cot θ − tan θ) = (cosec θ + sec θ) ( sec θ cosec θ − 2)


Prove the following identities:

`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`


Prove the following identities:

`1/(1 - sinA) + 1/(1 + sinA) = 2sec^2A`


If tan A = n tan B and sin A = m sin B, prove that:

`cos^2A = (m^2 - 1)/(n^2 - 1)`


`(cot^2 theta ( sec theta - 1))/((1+ sin theta))+ (sec^2 theta(sin theta-1))/((1+ sec theta))=0`


If `(cosec theta - sin theta )= a^3 and (sec theta - cos theta ) = b^3 , " prove that " a^2 b^2 ( a^2+ b^2 ) =1`


If \[\cos A = \frac{7}{25}\]  find the value of tan A + cot A. 


sec4 A − sec2 A is equal to


If sin θ − cos θ = 0 then the value of sin4θ + cos4θ


Prove the following identity : 

`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2Acos^2B)`


Prove that `sqrt(2 + tan^2 θ + cot^2 θ) = tan θ + cot θ`.


Prove that  `sin^2 θ/ cos^2 θ + cos^2 θ/sin^2 θ = 1/(sin^2 θ. cos^2 θ) - 2`.


If x = a tan θ and y = b sec θ then


Prove that `sqrt((1 + cos "A")/(1 - cos"A"))` = cosec A + cot A


Prove that

sec2A – cosec2A = `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")`


If 1 + sin2θ = 3sinθ cosθ, then prove that tanθ = 1 or `1/2`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×