Advertisements
Advertisements
Question
The value of the expression [cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)] is ______.
Options
– 1
0
1
`3/2`
Solution
The value of the expression [cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)] is 0.
Explanation:
According to the question,
We have to find the value of the equation,
cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)
= cosec[90° – (15° – θ)] – sec(15° – θ) – tan(55° + θ) + cot[90° – (55° + θ)]
Since, cosec(90° – θ) = sec θ
And cot(90° – θ) = tan θ
We get,
= sec(15° – θ) – sec(15° – θ) – tan(55° + θ) + tan(55° + θ)
= 0
APPEARS IN
RELATED QUESTIONS
If (secA + tanA)(secB + tanB)(secC + tanC) = (secA – tanA)(secB – tanB)(secC – tanC) prove that each of the side is equal to ±1. We have,
Prove the following trigonometric identities.
`1/(sec A + tan A) - 1/cos A = 1/cos A - 1/(sec A - tan A)`
Prove the following trigonometric identities.
`(1/(sec^2 theta - cos theta) + 1/(cosec^2 theta - sin^2 theta)) sin^2 theta cos^2 theta = (1 - sin^2 theta cos^2 theta)/(2 + sin^2 theta + cos^2 theta)`
Prove the following trigonometric identities.
(1 + cot A − cosec A) (1 + tan A + sec A) = 2
Prove the following trigonometric identities.
(cosec θ − sec θ) (cot θ − tan θ) = (cosec θ + sec θ) ( sec θ cosec θ − 2)
Prove the following identities:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`
Prove the following identities:
`1/(1 - sinA) + 1/(1 + sinA) = 2sec^2A`
If tan A = n tan B and sin A = m sin B, prove that:
`cos^2A = (m^2 - 1)/(n^2 - 1)`
`(cot^2 theta ( sec theta - 1))/((1+ sin theta))+ (sec^2 theta(sin theta-1))/((1+ sec theta))=0`
If `(cosec theta - sin theta )= a^3 and (sec theta - cos theta ) = b^3 , " prove that " a^2 b^2 ( a^2+ b^2 ) =1`
If \[\cos A = \frac{7}{25}\] find the value of tan A + cot A.
sec4 A − sec2 A is equal to
If sin θ − cos θ = 0 then the value of sin4θ + cos4θ
Prove the following identity :
`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2Acos^2B)`
Prove that `sqrt(2 + tan^2 θ + cot^2 θ) = tan θ + cot θ`.
Prove that `sin^2 θ/ cos^2 θ + cos^2 θ/sin^2 θ = 1/(sin^2 θ. cos^2 θ) - 2`.
If x = a tan θ and y = b sec θ then
Prove that `sqrt((1 + cos "A")/(1 - cos"A"))` = cosec A + cot A
Prove that
sec2A – cosec2A = `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")`
If 1 + sin2θ = 3sinθ cosθ, then prove that tanθ = 1 or `1/2`.