Advertisements
Advertisements
प्रश्न
The value of the expression [cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)] is ______.
विकल्प
– 1
0
1
`3/2`
उत्तर
The value of the expression [cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)] is 0.
Explanation:
According to the question,
We have to find the value of the equation,
cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)
= cosec[90° – (15° – θ)] – sec(15° – θ) – tan(55° + θ) + cot[90° – (55° + θ)]
Since, cosec(90° – θ) = sec θ
And cot(90° – θ) = tan θ
We get,
= sec(15° – θ) – sec(15° – θ) – tan(55° + θ) + tan(55° + θ)
= 0
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
(sec2 θ − 1) (cosec2 θ − 1) = 1
Prove the following trigonometric identities.
`(1 + sec theta)/sec theta = (sin^2 theta)/(1 - cos theta)`
Prove the following trigonometric identities
sec4 A(1 − sin4 A) − 2 tan2 A = 1
If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, show that `x^2/a^2 + y^2/b^2 - x^2/c^2 = 1`
Prove the following identities:
`(sinAtanA)/(1 - cosA) = 1 + secA`
Prove that:
`1/(cosA + sinA - 1) + 1/(cosA + sinA + 1) = cosecA + secA`
Prove the following identities:
cosec4 A (1 – cos4 A) – 2 cot2 A = 1
Write the value of `4 tan^2 theta - 4/ cos^2 theta`
If `tan theta = 1/sqrt(5), "write the value of" (( cosec^2 theta - sec^2 theta))/(( cosec^2 theta - sec^2 theta))`
If cosec θ = 2x and \[5\left( x^2 - \frac{1}{x^2} \right)\] \[2\left( x^2 - \frac{1}{x^2} \right)\]
\[\frac{1 - \sin \theta}{\cos \theta}\] is equal to
If sin θ + sin2 θ = 1, then cos2 θ + cos4 θ =
Prove the following identity :
`(cosecA - sinA)(secA - cosA)(tanA + cotA) = 1`
Prove the following identity :
`sqrt((1 + sinq)/(1 - sinq)) + sqrt((1- sinq)/(1 + sinq))` = 2secq
Evaluate:
`(tan 65^circ)/(cot 25^circ)`
If A + B = 90°, show that sec2 A + sec2 B = sec2 A. sec2 B.
Prove the following identities.
`(sin "A" - sin "B")/(cos "A" + cos "B") + (cos "A" - cos "B")/(sin "A" + sin "B")`
If `(cos alpha)/(cos beta)` = m and `(cos alpha)/(sin beta)` = n, then prove that (m2 + n2) cos2 β = n2
sin2θ + sin2(90 – θ) = ?
If cos θ = `24/25`, then sin θ = ?