हिंदी

The value of the expression [cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)] is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The value of the expression [cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)] is ______.

विकल्प

  • – 1

  • 0

  • 1

  • `3/2`

MCQ
रिक्त स्थान भरें

उत्तर

The value of the expression [cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)] is 0.

Explanation:

According to the question,

We have to find the value of the equation,

cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)

= cosec[90° – (15° – θ)] – sec(15° – θ) – tan(55° + θ) + cot[90° – (55° + θ)]

Since, cosec(90° – θ) = sec θ

And cot(90° – θ) = tan θ

We get,

= sec(15° – θ) – sec(15° – θ) – tan(55° + θ) + tan(55° + θ)

= 0

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Introduction To Trigonometry and Its Applications - Exercise 8.1 [पृष्ठ ९०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 10
अध्याय 8 Introduction To Trigonometry and Its Applications
Exercise 8.1 | Q 3 | पृष्ठ ९०

संबंधित प्रश्न

Prove the following trigonometric identities.

(sec2 θ − 1) (cosec2 θ − 1) = 1


Prove the following trigonometric identities.

`(1 + sec theta)/sec theta = (sin^2 theta)/(1 - cos theta)`


Prove the following trigonometric identities

sec4 A(1 − sin4 A) − 2 tan2 A = 1


If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z c tan θ, show that `x^2/a^2 + y^2/b^2 - x^2/c^2 = 1`


Prove the following identities:

`(sinAtanA)/(1 - cosA) = 1 + secA`


Prove that:

`1/(cosA + sinA - 1) + 1/(cosA + sinA + 1) = cosecA + secA`


Prove the following identities:

cosec4 A (1 – cos4 A) – 2 cot2 A = 1


Write the value of `4 tan^2 theta  - 4/ cos^2 theta`


If `tan theta = 1/sqrt(5), "write the value of" (( cosec^2 theta - sec^2 theta))/(( cosec^2 theta - sec^2 theta))`


If cosec θ = 2x and \[5\left( x^2 - \frac{1}{x^2} \right)\] \[2\left( x^2 - \frac{1}{x^2} \right)\] 


\[\frac{1 - \sin \theta}{\cos \theta}\] is equal to


If sin θ + sin2 θ = 1, then cos2 θ + cos4 θ = 


Prove the following identity :

`(cosecA - sinA)(secA - cosA)(tanA + cotA) = 1`


Prove the following identity : 

`sqrt((1 + sinq)/(1 - sinq)) + sqrt((1- sinq)/(1 + sinq))` = 2secq


Evaluate:

`(tan 65^circ)/(cot 25^circ)`


If A + B = 90°, show that sec2 A + sec2 B = sec2 A. sec2 B.


Prove the following identities.

`(sin "A" - sin "B")/(cos "A" + cos "B") + (cos "A" - cos "B")/(sin "A" + sin "B")`


If `(cos alpha)/(cos beta)` = m and `(cos alpha)/(sin beta)` = n, then prove that (m2 + n2) cos2 β = n2


sin2θ + sin2(90 – θ) = ?


If cos θ = `24/25`, then sin θ = ?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×