Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities
sec4 A(1 − sin4 A) − 2 tan2 A = 1
उत्तर
We have to prove sec4 A(1 − sin4 A) − 2 tan2 A = 1
We know that `sin^2 A + cos^2 A = 1`
So,
`sec^4 A (1 - sin^4 A) - 2tan^2 A = 1/cos^4 A (1 - sin^4 A) - 2 sin^2 A/cos^2 A`
`= (1/cos^4 A - sin^4 A/cos^4 A) - 2 (sin^2 A)/(cos^2 A)`
`= ((1 - sin^4 A)/cos^4 A) - 2 (sin^2 A)/cos^2 A`
`= ((1 - sin^2 A)(1 + sin^2 A))/cos^4 A - 2 sin^2 A/cos^2 A`
`= (cos^2 A (1 + sin^2 A))/cos^4 A - 2 sin^2 A/cos^2 A`
`= (1 + sin^2 A - 2 sin^2 A)/cos^2 A`
`= (1 - sin^2 A)/cos^2 A`
`= cos^2 A/cos^2 A`
= 1
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(cos theta - sin theta + 1)/(cos theta + sin theta - 1) = cosec theta + cot theta`
Prove the following trigonometric identities.
`(1 + cos theta - sin^2 theta)/(sin theta (1 + cos theta)) = cot theta`
if `a cos^3 theta + 3a cos theta sin^2 theta = m, a sin^3 theta + 3 a cos^2 theta sin theta = n`Prove that `(m + n)^(2/3) + (m - n)^(2/3)`
Prove that `sqrt((1 + cos theta)/(1 - cos theta)) + sqrt((1 - cos theta)/(1 + cos theta)) = 2 cosec theta`
Prove the following identities:
`1/(tan A + cot A) = cos A sin A`
Prove the following identities:
`(secA - tanA)/(secA + tanA) = 1 - 2secAtanA + 2tan^2A`
Prove the following identities:
`cotA/(1 - tanA) + tanA/(1 - cotA) = 1 + tanA + cotA`
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
If 2 sin A – 1 = 0, show that: sin 3A = 3 sin A – 4 sin3 A
`(1+tan^2theta)(1+cot^2 theta)=1/((sin^2 theta- sin^4theta))`
` (sin theta - cos theta) / ( sin theta + cos theta ) + ( sin theta + cos theta ) / ( sin theta - cos theta ) = 2/ ((2 sin^2 theta -1))`
`(1+ cos theta - sin^2 theta )/(sin theta (1+ cos theta))= cot theta`
If `(cot theta ) = m and ( sec theta - cos theta) = n " prove that " (m^2 n)(2/3) - (mn^2)(2/3)=1`
From the figure find the value of sinθ.
What is the value of (1 + tan2 θ) (1 − sin θ) (1 + sin θ)?
Prove the following identity :
`sqrt((1 + sinq)/(1 - sinq)) + sqrt((1- sinq)/(1 + sinq))` = 2secq
Choose the correct alternative:
1 + tan2 θ = ?
Prove that `sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A - 1) = 1`.
Prove that `cos θ/sin(90° - θ) + sin θ/cos (90° - θ) = 2`.
Without using the trigonometric table, prove that
tan 10° tan 15° tan 75° tan 80° = 1