Advertisements
Advertisements
प्रश्न
Prove that `sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A - 1) = 1`.
उत्तर
LHS = `(sec A)/(sec A + tan A - 1) + cos A/(cosec A + cot A - 1)`
= `(sin A)/(1/cos A + sin A/cos A - 1) + cos A/(1/sin A + cos A/sin A - 1)`
= `(sin A/(1 + sin A - cos A))/cos A + ((cos A)/(1 + cos A - sin A))/(sin A)`
= `(sin A.cos A)/(1 + sin A - cos A) + (sin A. cos A)/(1 + cos A - sin A)`
= `(sin A. cos A( 1 + cos A - sin A + 1 + sin A - cos A))/([ 1 + (sin A - cos A)][1 - (sin A - cos A)])`
= `(2sin A. cos A)/((1)^2 - (sin A - cos A)^2)`
= `(2sin A. cos A)/(1 - (sin^2 A + cos^2 A - 2 sin A.cos A))`
= `(2 sin A. cos A)/(1 - 1 + 2 sin A. cos A)`
= `2/2 = 1`
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Evaluate
`(sin ^2 63^@ + sin^2 27^@)/(cos^2 17^@+cos^2 73^@)`
Prove the following trigonometric identities.
`(1 - cos theta)/sin theta = sin theta/(1 + cos theta)`
Prove that:
(1 + tan A . tan B)2 + (tan A – tan B)2 = sec2 A sec2 B
Prove the following identities:
sec4 A (1 – sin4 A) – 2 tan2 A = 1
If 3 `cot theta = 4 , "write the value of" ((2 cos theta - sin theta))/(( 4 cos theta - sin theta))`
If `sec theta = x ,"write the value of tan" theta`.
Prove that `((1 + sin θ - cos θ)/( 1 + sin θ + cos θ))^2 = (1 - cos θ)/(1 + cos θ)`.
Prove that `"cosec" θ xx sqrt(1 - cos^2theta)` = 1
Prove that sec2θ – cos2θ = tan2θ + sin2θ
If tan θ = `x/y`, then cos θ is equal to ______.